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2 Research topic

In many situations, it is necessary to transmit data from one place to an
other. A classical example is the transmission of data via satellites. Also
playing music on a compact disc is an example of data transmission; the
music stored in a binary form on the compact disc is transmitted via a laser
beam to the compact disc player and reconverted into music.

During the transmission of data, it is possible that there occur errors.
Atmospheric circumstances can change data in satellite communication;
scratches and finger prints on a compact disc can make the binary infor-
mation stored on the disc unreadable.

The crucial question is how these inevitable errors can be corrected.
The solution is to construct codes. For practical purposes, we can restrict

ourselves to linear codes.
Linear codes are described by their four parameters: we speak of [n, k, d; q]-

codes. These are k-dimensional subspaces of the n-dimensional vector space
V (n, q) over the finite field GF (q), such that two distinct vectors of these
subspaces differ in at least d positions. For fixed value of q, the order of the
underlying field, the best linear codes are codes with:
(1) short length n, for fast data transmission,
(2) large dimension k, for a large variety of information that can be trans-
mitted,
(3) large minimal distance d, for being able to correct a lot of errors.
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Research in coding theory starts with constructing good codes. When a
parameter n, k or d is optimalized for fixed values of the field order q and
the other two parameters, we say that the code is optimal.

Within this project, coding-theoretical problems will be studied by look-
ing at the equivalent problems regarding substructures of finite projective
spaces, so of substructures in Galois geometries. Namely, the linear codes are
the classical examples of practical applications of Galois geometries. Galois
geometries consist of the study of the properties of finite projective spaces.
Many problems in Galois geometries have a meaning as problem in coding
theory, and vice versa.

This means that a lot of problems in coding theory can be studied from
a geometrical point of view, giving, next to the techniques of coding theory,
geometrical methods to study these problems. These geometrical methods
have led to important results in coding theory.
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Project
This project has as a global objective to study the link between the following
two disciplines:
(1) the theory of linear codes, and
(2) Galois geometries.

For a linear [n, k, d; q]-code, we have the following bound [3], known as
the Griesmer bound: n ≥

∑k−1
i=0

⌈
d
qi

⌉
= gq(k, d), where dxe denotes the

smallest integer greater than or equal to x.
We want to study the relationship between minihypers (which are certain

subsets of Projective Spaces; see further) and the theory of linear codes
meeting the Griesmer bound. This study has already been started in previous
articles. We address several specific questions which then occurred and
which will allow us to obtain a deeper insight in the relationship between
Galois geometries and the theory of linear codes. An example of such a
question is the (non)-existence of linear binary codes attaining the Griesmer
bound. A partial answer, namely for projective binary codes (these are
codes for which no two columns of the generator matrix are a multiple of
each other, hence codes having dual distance at least 3), was given by T.
Helleseth [4]. Following the advice of T. Helleseth, a systematic study of
non-projective linear codes meeting the Griesmer bound was initiated. To
continue this research, new results on minimal blocking sets are needed.

The results which will be obtained also have a lot of applications in other
research areas: for instance, on extendability of partial spreads and ovoids in
projective spaces, in polar spaces and in the generalized hexagon H(q). We
state these results with the bounds and conditions of [1]

Application 2.1 We classified all [n, k, d; q]-codes with

d = θqk−1 − δqµ, n = θvk − δvµ+1; (1)

for δ < 2p2 − 4p (and all µ ≤ k − 1), and total excess ≤ p2 + p. (θ is the
maximum weight of a point).

Application 2.2 An s-spread of PG(N, q) is a set of s-spaces which par-
tition PG(N, q).
A partial s-spread of PG(N, q) is a set of mutually skew s-spaces in PG(N, q).
A partial spread S is maximal if it cannot be extended to a larger (partial)
spread.
The holes of S are the points of PG(N, q) not in an element of S.

If |S| = vN+1/vs+1 − δ, then we call δ the deficiency of S.

Theorem (Govaerts and Storme)
If (s+1)|(N+1) and δ < q, the holes of S form a {δvs+1, δvs;N, q}-minihyper
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Theorem
Let S be a maximal partial µ-spread in PG(t, p3), (µ + 1)|(t + 1), with defi-
ciency δ ≤ 2p2 − 4p; p = ph

0 , p0 prime, p0 ≥ 7, p ≥ 9, h ≥ 1.
Then δ = r(p3/2 + 1) + s(p2 + p + 1), where r ∈ N and s ∈ {0, 1}.
Moreover, the case (r, s) = (1, 0) cannot occur when (2µ+1)(p3/2−1) <

q − 1 [Blokhuis-Metsch].

Application 2.3 Let P denote a finite classical polar space.
A µ-spread of P is a set of totally isotropic µ-dimensional subspaces of P
partitioning the point set of P.
A partial µ-spread of P is a set of pairwise disjoint totally isotropic µ-
dimensional subspaces.

Necessary conditions [Govaerts-Storme] for the existence of a µ-spread
are:
(1) for W2n+1(q): (µ + 1)|(n + 1),
(2) for Q(2n, q): (µ + 1)|(2n),
(3) for Q+(2n + 1, q): (µ + 1)|(n + 1),
(4) for Q−(2n + 1, q): (µ + 1)|n,
(5) for H(2n, q2): (µ + 1)|n and,
(6) for H(2n + 1, q2): (µ + 1)|(n + 1).

If these conditions are satisfied, we say that the size of P admits a µ-
spread.

The deficiency of a partial µ-spread S of P is the size of a hypothetical
µ-spread of P minus |S|. A hole of a partial µ-spread S of P is a point of
P not contained in an element of S.

Theorem (Govaerts and Storme)
If P is a classical polar space in PG(t, q) whose size admits a µ-spread and
if S is a partial µ-spread of P with deficiency δ < q, then the set of holes of
S forms a {δvµ+1, δvµ;t, q}-minihyper.

A generator is a maximal totally isotropic subspace of P.

Lemma
(1) A (projected) Baer subspace whose point set is contained in a quadric P
is contained in a generator of P.
(2) A (projected) subspace over GF ( 3

√
q) contained in a quadric P is con-

tained in a generator of P.
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Theorem
Let q = p3, p = ph

0 , p0 prime, p0 ≥ 7, p ≥ 9, h ≥ 1. Assume P is a
nonsingular quadric whose size admits a µ-spread, and with 2µ + 1 larger
than the dimension of a generator of P.

If δ ≤ 2p2 − 4p is the deficiency of a partial µ-spread S of P, then S is
extendable to a µ-spread of P.

Application 2.4 Let x(x0, . . . , x6) and y(y0, . . . , y6) be two different points
in PG(6, q). The Grassmann coordinates of the line xy are (p01, p02, . . . ,
p56), where

pij =
∣∣∣∣ xi xj

yi yj

∣∣∣∣
The split Cayley hexagon is a point-line incidence structure H(q) defined
in the following way. The points of H(q) are the points of PG(6, q) lying
on the quadric Q(6, q) with equation X0X4 + X1X5 + X2X6 = 0. The lines
of H(q) are the lines of this quadric whose Grassmann coordinates satisfy
p12 = p34, p54 = p32, p20 = p35, p65 = p30, p01 = p36, p46 = p31. Incidence
is containment.

Two points of H(q) are called opposite if they are at distance 6 from each
other in the incidence graph of H(q) (this is the maximal possible distance).

An ovoid of H(q) is a set of q3 + 1 mutually opposite points. If O is
an ovoid of H(q), then the set of q3 + 1 planes x⊥, with x ∈ O, forms a
plane spread of Q(6, q) [Van Maldeghem]. A partial ovoid of H(q) is a set
of mutually opposite points of H(q), and it is called maximal if it cannot
be extended to a larger set of mutually opposite points. The deficiency of a
partial ovoid of H(q) containing N points is δ = q3 + 1−N .

As a corollary from the classification of minihypers, we have
Corollary

Assume q = p3, p = ph
0 , p0 ≥ 7 prime, h ≥ 1, p ≥ 9. If O is a partial ovoid

of H(p3) of deficiency δ ≤ 2p2 − 4p, then δ is even.
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Research performed

Definition 2.1 A blocking set of PG(2, q) is a set of points intersecting
every line of PG(2, q) in at least one point.

A blocking set is called minimal when no proper subset of it is still a
blocking set; we call a blocking set trivial when it contains a line; and a
blocking set is called linear if it is a subgeometry or a projected subgeometry.

The study of linear blocking sets will have a geometric approach, the
main objective of this study is to obtain a good understanding of the ge-
ometric structure of these objects. This work is a starting point for the
construction and characterization of the minihypers; and hence of linear
codes meeting the Griesmer bound.

The aim of this study is to obtain: (1) combinatorial results on minimal
blocking sets (in the sense of [2]), and (2) structural characterizations of
small minimal blocking sets (as in [5]).

When the results described above are obtained, they will be applied to
construct and classify minihypers.

Definition 2.2 An {f,m;N, q}-minihyper is a pair (F,w), where F is a
subset of the point set of PG(N, q) and w is a weight function w : PG(N, q) →
N : x 7→ w(x), satisfying
(1) w(x) > 0 ⇔ x ∈ F ,
(2)

∑
x∈F w(x) = f , and

(3) min(|(F,w) ∩H| =
∑

x∈H w(x) | H ∈ H) = m; where H denotes the set
of hyperplanes of PG(N, q).

The classifications of these minihypers are equivalent to classifications of
linear codes meeting the Griesmer bound; if the minihyper does not exist,
we know that for the considered parameters, there is no linear code meeting
the Griesmer bound.

The classifications of the minihypers are by induction on the dimension;
therefore it is particularly recommended to study the blocking sets, since
they appear as planar intersections with the minihypers.

We now describe how we will also included non-projective linear codes
in the classifications.

A further reason to study minihypers with weights, or equivalently non-
projective linear codes meeting the Griesmer bound, is that we can describe
projected subgeometries appearing in such minihypers in a very natural way.
Namely in the following way:

Let Π be a projected PG(d, pt). The weight of a point s of Π is the
number of points s′ of PG(d, pt) that are projected onto s.
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We refer to the attached article [1] for a detailed description of the re-
search performed.
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3 Work in progress

A starting point is the article [1], which was finnished during the research
visit. The next step is to use these results as an induction basis, for both the
dimension of the projective space, as for the size of the minihypers. Hence,
we want a characterization of {δvµ+1, δvµ;N, p3}-minihypers.

We now describe the steps which will be needed to obtain our final
characterization.

Let F be a {δ(p3 + 1), δ;N, p3}-minihyper.
We suppose the total excess

∑
x∈F (w(x) − 1) is at most p3 − 4p and

δ ≤ 2p2 − 4p.
Step 1

A {δ(p3 + 1), δ;N, p3}-minihyper F , N ≥ 4, p non-square, p = ph
0 , p0

prime, h ≥ 1, p0 ≥ 7, δ ≤ 2p2 − 4p, and with excess e ≤ p3 − 4p, is either:
(1) a sum of lines and at most one (projected) PG(5, p),
(2) a sum of lines and a {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper Ω \ N ,
where Ω is a PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 = 3,
and where N is the line contained in Ω.

Step 2

Let F be a {δ(p6 + p3 + 1), δ(p3 + 1);N, p3}-minihyper, δ ≤ 2p2 − 4p,
N ≥ 3, p ≥ 9 non-square, p = ph

0 , h ≥ 1, p0 ≥ 7 prime, with excess
e ≤ p2 + p.

Then F is a sum of planes and at most one projected subgeometry
PG(8, p).

Step 3

Let F be a {δvµ+1, δvµ;N, p3}-minihyper, µ ≥ 3, δ ≤ 2p2 − 4p, N ≥ 3,
p = ph

0 , h ≥ 2 even, p0 ≥ 7 prime, with excess e ≤ p2 + p.
Then F is a sum of µ-dimensional spaces PG(µ, p3), (projected) PG(2µ+

1,
√

q)’s, and of at most one (projected) subgeometry PG(3µ + 2, p).

4 Future collaborations

4.1 On general blocking sets

A t-fold (n − k)-blocking set in PG(n, q) is a set B of points of PG(n, q)
intersecting every k-dimensional subspace in at least t points. A t-fold (n−
k)-blocking set B of PG(n, q) is called minimal when no proper subset of B
is still a t-fold (n− k)-blocking set.

A 1-fold (n−k)-blocking set of PG(n, q) is also simply called an (n−k)-
blocking set of PG(n, q).
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We will obtain new classification results on minimal t-fold (n − k)-
blocking sets in PG(n, q).

We will first extend the following 1 (mod p) result of Szőnyi and Weiner
[6] to a t (mod p) result on minimal t-fold (n−k)-blocking sets in PG(n, q).

Theorem 4.1 Let B be a minimal (n−k)-blocking set in PG(n, q), q = ph,
p > 2 prime, h ≥ 1, of size less than 3(qn−k + 1)/2. Then every subspace
that intersects B in at least one point, intersects B in 1 (mod p) points.

Theorem 4.2 Let B be a minimal t-fold (n − k)-blocking set in PG(n, q),
q = ph, p > 2 prime, h ≥ 1, of size less than (t+3/2)(qn−k +1). Then every
k-dimensional subspace intersects B in t (mod p) points, and any subspace
of dimension less than k intersects B in 0, 1, . . . , t (mod p) points.

Such 1 (mod p) results, or more general t (mod p) results, also appear
with respect to other substructures in finite projective spaces, and are very
useful for obtaining classification theorems on these substructures.

We present how this t (mod p) result implies new classification results
on minimal t-fold (n−k)-blocking sets in PG(n, q). The most general results
are obtained when q is square. We will give classification results on mini-
mal t-fold (n− k)-blocking sets in PG(n, q), q square, containing subspaces
PG(k, q), but also, possibly projected, subgeometries over a subfield.

4.2 Blocking sets applied to minihypers

The further step in characterising the minihypers will be done by making
use of the previously mentioned results.

Future characterizations

Minihypers are (non)-minimal multiple (N − r)-blocking sets.

Example 4.3 A disjoint plane and a line in PG(4, q) are
a non-minimal 2-blocking set,
a minimal (q + 2)-fold 1-blocking set =
a {v3 + v2, v2 + v1; 4, q}-minihyper.

We give some examples of preliminary theorems which make use of the
results on blocking sets. These theorems are joint work of Sziklai and Weiner
(Budapest university), the visitor and Storme.

Lemma 4.4 A {t(q2 + q + 1) + ε1(q + 1) + ε0, t(q + 1) + ε1; 4, q}-minihyper
with t > 1, t ≤ p/2, ε1 + ε0 ≤ t

√
q contains a minimal t-fold 2-blocking set.
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Theorem 4.5 (Ferret, Storme, Sziklai and Weiner) If t > 1, t ≤ p/2,
then a t-fold 2-blockig set in PG(4, q) is the disjoint union of PG(4,

√
q)

and/or Baer cones.

Theorem 4.6 (Ferret, Storme, Sziklai and Weiner) A {t(q2+q+1)+
ε1(q+1)+ ε0, t(q+1)+ ε1; 4, q}-minihyper with t > 1, t ≤ p/2, ε1 + ε0 ≤ t

√
q

is the disjoint union of t PG(4,
√

q).

5 Attachments

1. Article obtained during the research visit.

2. Slides of the talk given at Sztaki on November 21, 2003.

3. Slides of the talk given at Eötvös Loránd University on November 21,
2003.
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