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Outline

1. Cellular Nonlinear Networks (CNNs).

(a) Mathematical model.

(b) Dynamic behavior: analytical and numerical
techniques.
i. Equilibrium points and stability.
ii. Periodic attractors.
iii. Non-periodic attractors (Tori, Strange and/or

Chaotic attractors).

2. Conclusions
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CNN mathematical model

L(Dt)xij(t) =
∑

|n|≤r,|m|≤r

TA
mn f(xi+m,j+n) + TC

mn xi+m,j+n

+
∑

|n|≤r,|m|≤r

TB
mn ui+m,j+n + I

T
A,B,C =





· · ·

· · ·

· · ·



 (1 ≤ i ≤ N, 1 ≤ j ≤ M)

Inputs and bias are assumed to be constant (autonomous systems)
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CNN mathematical model (cont.)

xij(t): state variable

L(Dt): rational function of the operator Dt = d
dt

f(·): nonlinear memoryless output function

uij(t): input terms

I : bias term

Initial Conditions [xij(0)] & Boundary conditions

Identical cells, containing only one nonlinear memoryless element.

Local connections, described by space-invariant templates.
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Chua-Yang CNN mathematical model

dxij

dt
= − xij +

∑

|m|≤r,|n|≤r

TA
mn y(xi+m,j+n)

+
∑

|n|≤r,|n|≤r

TB
mn ui+m,j+n + Î

y(x)

x1

−1

1

−1
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Full Range CNN model

ẋij = − xij +
∑

|m|≤r,|n|≤r

TA
mn y(xi+m,j+n) − g(xij)

+
∑

|m|≤r,|n|≤r

TB
mn ui+m,j+n + Î

g(xij) = m[xij − y(xi,j)] =







m(xij + 1) xij < −1

0 |xij | ≤ 1

m(xij − 1) xij > 1
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Full Range CNN nonlinear function (cont.)

g(x)

x1

−1

m 
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Nonlinear arrays of oscillators

G1 GK

Gs Gs

�
�

1

�
�

2

�
�

3

�
�

K

Y Y Yx1 x2 xi

Y (Dt)xi(t) = −f [xi(t)] − 2Gsxi(t) + Gsxi+1(t) + Gsxi−1(t)

∗ L(Dt) = Y (Dt)

∗ f(·): voltage-controlled characteristic of the nonlinear resistor.

∗ TA
m = [0 − 1 0]

∗ TC
m = [Gs − 2Gs Gs]
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Dynamic behavior: Equilibrium points

1. Determination of all the possible stable and unstable equilibrium points.

2. Equilibrium point bifurcations.

(a) Local bifurcations (saddle-node, pitchfork, Hopf bifurcations).

(b) Global bifurcations (homoclinic and heteroclinic bifurcations).

3. Domains of attractions of the stable equilibrium points.

4. Conditions for the existence of at least one stable equilibrium point.

(a) The existence of at least one stable equilibrium point does not imply
stability.

(b) The absence of stable equilibrium points implies instability.
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Equilibrium points: CYCNN and FRCNN (cont.)

1. A network composed by N × M cells exhibits 3N×M linear regions.

(a) Central region: all the cell lye in the linear part of their characteristics.

(b) Saturation regions: all the cells are saturated to ±1.

(c) Partial saturation regions: only some cells are saturated.

2. Each region may present at most one equilibrium point.

3. If the central element of the template satisfies T A
00 > 1, then

(a) If a saturation region presents an equilibrium point, then it is stable.

(b) If a partial saturation region (or the central region) presents an
equilibrium point, then it is unstable.

All the algorithms for equilibrium point computation in a CNN have an
exponential complexity
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Equilibrium point local bifurcations in 2 cell CYCNNs and FRCNNs (cont.)
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Global Bifurcations in 2 cell CYCNNs and FRCNNs (cont.)
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Bifurcation curve (cont.)

There exist sets of identical parameters for which CYCNN and FRCNN
models exhibit a qualitatively different dynamic behavior.
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Equilibrium point bifurcations: Nagumo Equation

∂x̃

∂t
= D

∂2x̃

∂z2
+ f(x̃) (0 ≤ z ≤ lz)

∂x̃

∂z
= 0 |z=0,lz

f(x̃) =















−αx̃ x̃ ≤ 0

−x̃3 + (1 + α)x̃2 − αx̃ 0 ≤ x̃ ≤ 1

(α − 1)(x̃ − 1) x̃ ≥ 1
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Nonlinear function f(·) - α = 0.5 (cont.)
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Nagumo equation: Corresponding CNN equation (cont.)

D
∂2x̃

∂z2
≈

D

h2
[xi+1(t) − 2xi(t) + xi−1(t)]























dx1(t)
dt

= D
h2 [x2(t) − x1(t)] + f [x1(t)]

dxi(t)
dt

= D
h2 [xi+1(t) − 2xi(t) + xi−1(t)] + f [xi(t)] (i 6= 2, N)

dxN (t)
dt

= D
h2 [xN−1(t) − xN (t)] + f [xN (t)]

Normalized discretization step hD = h√
D
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CNN equation (cont.)

1. For any number N of cells there exists a normalized discretization step h∗
D

such that for 0 ≤ hD < h∗
D the CNN equation presents only three

equilibrium points:

- Two stable equilibrium points Pa = (0, 0, ..., 0, 0) and
Pb = (1, 1, ..., 1, 1), whose Jacobian matrix exhibits N negative real
eigenvalues.

- One unstable equilibrium point P = (α, α, ..., α, α) that presents one
positive real eigenvalue.

2. For each finite values of hD < h∗
D the CNN equation and the PDE models

are topologically equivalent.

3. If hD ≥ h∗
D , then the CNN equation still presents the two stable equilibrium

points Pa and Pb.
The unstable point P = (α, α, ..., α, α) undergoes a series of pitchfork
bifurcations, that finally gives rise to the emergence of a number of
additional stable equilibrium points.
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Equilibrium point bifurcations in a 4 cell CNN (cont.)
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Equilibrium point bifurcations in a 10 cell CNN (cont.)
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Equilibrium point bifurcations in a 20 cell CNN (cont.)
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CNN equation (cont.)

4. The CNN equation is not topologically equivalent to the PDE model for
hD ≥ h∗

D , i.e. after the occurrence of the first bifurcation.

5. For hD > hs
D the discrete CNN equation presents a pair of stable

equilibrium points that are not present in the original PDE, i.e. there is not a
one-to-one correspondence between the attractors of the two models.

The propagation failure phenomena occurs for those hD > hs
D such

that there is not a one-to-one correspondence between the stable equi-
librium points of the two models.

For each normalized discretization step h (even arbitrarily small) there
exists a diffusion coefficient D such that hD = h√

D
> hD

S ,i.e. the CNN
equation and the PDE model are not topologically equivalent.
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CNN equation (cont.)

6. For any number N of cells and diffusion coefficient D, there exists h
f
D such

that for hD > h
f
D the cells can be considered uncoupled

- Each uncoupled cell presents three equilibrium points:

xi =















0 stable

1 stable

α unstable

- The whole CNN presents 3N equilibrium points:
∗ 2N stable points: {(1, 0) (1, 0), ..., (1, 0), (1, 0)} (with N real

negative eigenvalues).
∗ 3N − 2N unstable points (with at least one positive real eigenvalue).
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Complete bifurcation process in a 10 cell CNN (cont.)
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Bifurcations and domains of attraction: Remarks
1. Local bifurcations can be studied by starting from a point of the parameter

space that allows to easily compute all the equilibrium points.

(a) CYCNNs (FRCNNs) with zero input and bias and dominant template.
Each linear region presents an equilibrium point (either stable or
instable).

(b) Nagumo CNN with hD → 0.

2. Local bifurcations simply require the computation of the eigenvalues of the
Jacobian matrix associated to each equilibrium point.

3. Global bifurcations require to determine the stable and unstable manifolds
of the equilibrium points. Apart from simple network (plane systems) this is
a formidable task.

4. The determination of the domains of attractions of the stable equilibrium
points require to determine the unstable manifolds of the unstable
equilibrium points. Apart from planar CNNs the task is practically
impossible.
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Existence of at least one stable equilibrium point

1. Several conditions for CYCNNs, based on the system description as a
vector equation (Tavsanoglu et al.).

ẋ = F (x ) = −x + A + y + Bu + Î

(a) They do not exploit neither local connectivity nor template
space-invariance.

(b) They cannot be expressed in term of the template elements.

2. Some conditions directly exploits local connectivity and space-invariance
(Gilli et al.)

3. Coexistence of stable equilibrium points and stable limit cycles has been
observed (Takahashi et al.). The existence of stable equilibrium points does
not imply stability.
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Dynamic behavior: Stability

• Complete stability (Convergence): each trajectory converges towards an
equilibrium point.

– The system in general presents several equilibrium points.

– All the attractors are stable equilibrium points.

• Stability (Convergence) almost everywhere: each trajectory (with the
exception of a set of measure zero) converge towards an equilibrium point.

– The systems may admits unstable periodic/non-periodic invariant limit
sets, e.g. unstable limit cycles.

– All the attractors are stable equilibrium points.

• Global stability: each trajectory converges towards a single stable
equilibrium point, that is globally asymptotically stable.
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Dynamic behavior: Complete stability (cont.)

• Lyapunov function V (x ) with non-positive time derivative along the sys-

tem trajectories, i.e. V̇ (x ) ≤ 0

• All the trajectories are bounded.

• The equilibrium points are isolated.

La Salle principle ensures the Complete stability

∗ CYCNNs with symmetric templates (Chua et al.)

∗ CYCNNs with diagonal dominant and related templates (Takahasci et al.)

∗ CYCNNs with a class of non-positive and non-symmetric templates (Gilli
et al.)

26



Dynamic behavior: Stability (cont.)

Stability almost everywhere
Based on some important results of Hirsch on cooperative systems

∗ Irreducible CYCNNs with positive templates (Chua et al.)

∗ Irreducible CYCNNs with templates that can be mapped onto positive
templates, through diagonal state transformations (Wu et al.)

Global stability

∗ Several results related to general neural networks.

∗ CYCNNs with a single equilibrium point are not suitable for signal and
information processing.
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Dynamic behavior: Stability and Instability (cont.)

Most stability conditions do not exploit local connectivity and template space-
invariance. The conditions under which stability can be proved are identical
for both CYCNNs and FRCNNs (Gilli et al.)
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Dynamic behavior: Periodic limit cycles

1. Determination of all the periodic limit cycles (either stable and unstable) and
their Floquet’s multipliers (FMs)

(a) Stable: one FM is zero; the absolute values of all the other FMs is less
than 1.

(b) Unstable: one FM is zero; at least one FM has absolute value grater than
1.

2. Limit cycle bifurcations

(a) Tangent (fold) bifurcation: one FM equals 1.

(b) Period doubling (flip) bifurcation: one FM equals −1.

(c) Naimark Sacker bifurcation: the module of a pair of complex FMs is 1.

3. Estimation of the domains of attractions.
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Dynamic behavior: Periodic limit cycles (cont.)

1. In large scale dynamical systems, like CNNs, the sole
simulation does not allow to identify all the limit cycles (either
stable or unstable).

(a) It would require to consider infinitely many initial conditions.

(b) Unstable limit cycles cannot be detected through simulation.

2. Through spectral techniques, the computation of all the limit
cycles is reduced to a non-differential (sometimes algebraic)
problem.

(a) Describing function technique.

(b) Harmonic balance technique.
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Periodic limit cycles: The describing function technique (cont.)

Each one of the N × M state variables is represented through a single
harmonic (with given amplitude, frequency and phase) and a bias

xij(t) ≈ Aij + Bij sin (ωt + ηij) η11 = 0

f(xij(t)) ≈ F A
ij + FB

ij sin (ωt + ηij)

FA
ij =

1

2π

∫ π

−π

f [Aij + Bij sin(θ)]dθ

FB
ij =

1

π

∫ π

−π

f [Aij + Bij sin(θ)] sin(θ)dθ
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The describing function technique (cont.)

1. The substitution into the state equation reduces the problem of detecting all
the limit cycles to that of finding all the solutions of a set of 3(N × M)
equations, with the following unknowns

(a) the frequency ω.

(b) the N × M bias amplitudes Aij .

(c) the N × M harmonic amplitudes Bij .

(d) the N ×M −1 harmonic phases ηij (since η11 is assumed to be zero).

2. The conditions under which the describing function technique yields
rigorous results are rather restrictive (Mees et al.). However in most cases it
works (Gilli et al.).

3. Limit cycle stability and bifurcations can be studied through approximate
methods based on the describing function technique (see Genesio and Gilli
for the extension to large scale dynamical systems).
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Periodic limit cycles: The harmonic balance technique (cont.)

1. The characteristics of the limit cycles identified through the describing function
technique can be investigated through the harmonic balance technique.

2. Each state variable is represented by means of a finite number H of harmonics:

xij(t) = A
0

ij +

H
∑

k=1

A
k
ij cos(kωt) + B

k
ij sin(kωt) A

1

11 = 0

Set of (2H + 1) × N × M unknowns

• the frequency ω.

• the N × M bias amplitudes A
0

ij .

• the 2H×N×M−1 harmonic amplitudes A
k
ij and B

k
ij (A1

11 is assumed
to be zero).
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The HB technique for scalar Lur’e systems

L - 1 ( D )

n (  ·  )

s ( t ) x ( t )

L(D)x(t) + n [x(t)] = s(t), x(t) ∈ R

If the systems admits of a periodic solution of period T , then x(t) can be
expanded through the Fourier series

x(t) = A0 +

∞
∑

k=1

Ak cos(kωt) + Bk sin(kωt) ω =
2π

T
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Examples

Third order oscillator

L(D) =
D3 + (1 + α)D2 + βD + αβ

α (D2 + D + β)
n(x) = −

8

7
x +

4

63
x3

Second order oscillator

L(D) =
LCD2 − LD + 1

kLD
n(x) = x3
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The harmonic balance (HB) technique

1. The state is represented through a finite (N) number of harmonics

x(t) = A0 +
N

∑

k=1

Ak cos(kωt) + Bk sin(kωt)

2. The term L(D)x(t) yields:

L(D)x(t) = L(0)A0 +

N
∑

k=1

{Re[L(jkω)]Ak + Im[L(jkω)]Bk} cos(kωt)

+

N
∑

k=1

{Re[L(jkω)]Bk − Im[L(jkω)Ak} sin(kωt)
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The harmonic balance (HB) technique (cont.)

3. The term n [x(t)] yields (by truncating the series to N harmonics):

n [x(t)] = C0 +

N
∑

k=1

Ck cos(kωt) + Dk sin(kωt)

C0 =
1

T

∫

T

0

n

[

A0 +

N
∑

k=1

Ak sin(kωt) + Bk cos(kωt)

]

dt

Ck =
2

T

∫

T

0

n

[

A0 +

N
∑

k=1

Ak sin(kωt) + Bk cos(kωt)

]

cos(kωt) dt

Dk =
2

T

∫

T

0

n

[

A0 +

N
∑

k=1

Ak sin(kωt) + Bk cos(kωt)

]

sin(kωt) dt
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The harmonic balance (HB) technique (cont.)

3. The term s(t) yields (by truncating the series to N harmonics):

s(t) = P0 +

N
∑

k=1

Pk cos(kωt) + Qk sin(kωt)

P0 =
1

T

∫ T

0

s(t) dt

Pk =
2

T

∫ T

0

s(t) cos(kωt) dt

Qk =
2

T

∫ T

0

s(t) sin(kωt) dt
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The harmonic balance (HB) technique (cont.)

4. A set of 2N + 1 nonlinear equations is obtained, by equating the
coefficients of the constant term and of the harmonics cos(kωt), sin(kωt)

L(0)A0 + C0(A0, ..., BN ) = P0

Re[L(jkω)]Ak − Im[L(jkω)]Bk + Ck(A0, ..., BN ) = Pk 1 ≤ k ≤ N

Im[L(jkω)]Ak + Re[L(jkω)]Bk + Dk(A0, ..., BN ) = Qk 1 ≤ k ≤ N

5. Autonomous systems: the term A1 is assumed to be equal to zero (i.e.
the phase of the first harmonic of x(t) is arbitrarily fixed); since ω is
unknown, the system has an equal number [(2N + 1)] of equations and
unknowns.
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Efficient HB implementations

1. Consider the time samples vectors

y(t) = L(D)x(t)

y = [y(t0), y(t1), ..., y(t2N ), y(t2N+1)]
′

x = [x(t0), x(t1), ..., x(t2N ), x(t2N+1)]
′

s = [s(t0), s(t1), ..., s(t2N ), s(t2N+1)]
′

tp =
T

2N + 1
p p = 1, . . . , 2N + 1
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Efficient HB implementations (cont.)

2. Impose that the HB equation be satisfied for t = tp

y(tp) + n [x(tp)] = s(tp), p = 1, . . . , 2N + 1

that in vector notation yields

y + n [x] = s

with

n [x] = [ n [x(t1)], n [x(t2)], ...,n [x(t2N+1)] ]′
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Efficient HB implementations (cont.)

x = Γ−1X, X = [A0, A1, ..., AN , B1, ..., BN ]′

Γ−1 =











1 γc
1,1 γs

1,1 . . . γc
1,N γs

1,N

1 γc
2,1 γs

2,1 . . . γc
2,N γs

2,N

...
...

...
...

...

1 γc
2N+1,1 γs

2N+1,1 . . . γc
2N+1,N γs

2N+1,N











γc
p,q = cos(qωtp) = cos

(

q2πp

2N + 1

)

γs
p,q = sin(qωtp) = sin

(

q2πp

2N + 1

)
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y = Γ−1 Ω(ω) X

Ω(ω) =





















L(0) 0 0 . . . 0 0

0 R1 I1 . . . 0 0

0 −I1 R1 . . . 0 0
...

...
...

...
...

0 0 0 . . . RN IN

0 0 0 . . . −IN RN





















Rk = Re{L(jkω)}, Ik = Im{L(jkω)}

n [x] = n [Γ−1X]
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Efficient HB implementations (cont.)

y + n [x] = s

Γ−1 Ω(ω) X + n [Γ−1X] = s

Ω(ω) X + Γ n [Γ−1X] = Γ s

The 2N + 1 equations in the 2N + 1 unknowns X can be solved without
performing any integrals.
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Limit cycle stability and bifurcations

Variational equation: x(t) = x(t) + x̃(t)

L(D)x̃(t) + g(t)x̃(t) = 0

g(t) =
dn(ζ)

dζ

∣

∣

∣

∣

ζ=x(t)

x̃(t) =

D
∑

i=1

Hivi(t) exp(λit) (D → system dimension)

Floquet’s multipliers → exp(λiT )
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Periodic limit cycle: final remarks
1. The describing function technique is very effective for detecting the existence of limit

cycles (either stable or unstable) and also for a preliminary study of their bifurcations.

2. The harmonic balance technique allows to determine with a good accuracy the main
limit cycle characteristics.

3. HB based technique can be exploited for computing FMs, even in large-scale
systems (Gilli et al.).

4. Once the limit cycle has been detected through a spectral technique, the Floquet’s
multipliers can also be computed via a time-domain technique. The application to
large arrays of nonlinear oscillators (Chua’s circuits) has allowed to determine all the
significant limit cycle bifurcations (Gilli et al.).

A CNN can also be considered as a dynamical system with a time and space de-
pendence. The extension of the describing function and of the harmonic balance
technique to space-time systems allows to detect important space-time phenom-
ena. (Gilli et al.)

46



Dynamic behavior: non-periodic attractors

Non-periodic attractors can be detected through the following tools:

1. Bifurcation analysis.

(a) Neimark Sacker: torus.

(b) Sequence of period doubling bifurcations: period doubling route to
chaos.

(c) Sequence of Neimark Sacker bifurcations: torus breakdown route to
chaos.

2. Computation of the Lyapunov exponents.

(a) Torus attractor: more than one exponent equals zero.

(b) Chaotic attractor: at least one positive exponent.

3. Evaluation of the power spectrum.
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Example of complex dynamics in CYCNN

TA =





0 r 0

s p −s

0 r 0



 with p > 1, r > 0, s > 0

y(x)

x1

−1

1

−1

48



Bifurcation diagram in a 3 × 3 CYCNN (cont.)
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Conclusions

1. CNN are large-scale nonlinear dynamical systems with local
connectivity and space-invariant structure.

2. In order to develop a rigorous design method a satisfactory
knowledge of CNN dynamics is necessary.

3. The analysis of the dynamics requires the introduction of new
analytical and numerical techniques.

4. Some results based on classical and new techniques and some
open problems have been presented.
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