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Abstract

The ultimate objective of this paper is to develop new techniques that can be used for the anal-
ysis of performance degradation due to statistical uncertainty for a wide class of linear stochastic
systems. For this we need new technical tools similar to those used in [24] and summarized
in Section 2. The immediate technical objective is to extend the technical results used in [24]
to the Djereveckii-Fradkov-Ljung scheme with enforced boundedness, given as Algorithm DFL,
(3.53)-(3.54), see [3, 13, 53]. Our starting point is a standard approximation of the estimation
error used in the asymptotic theory of recursive estimation, see e.g. [54, 65]. Tight control of the
difference between the estimation error and its standard approximation, referred to as residuals,
is a crucial point in our applications. The main technical advance of the present paper is a set of
strong approximation theorems for three closely related recursive estimation algorithms, given as
Theorems 4.1-4.3, in which, for any q ≥ 1, the Lq-norms of the residual terms are shown to tend
to zero with rate N−1/2−ε with some ε > 0. This is a significant extension of previous results
for the recursive prediction error or RPE estimator of ARMA processes given in [19] and [22].
Two useful corollaries will be derived in Section 5 and 6. In Theorem 5.1 a standard transform
of the estimation-error process for the basic recursive estimation method, Algorithm CR, will be
shown to be L-mixing, while in Theorem 6.2 the asymptotic covariance-matrix of the estimator
for the same method will be given. Applications to multi-variable adaptive prediction and the
minimum-variance self-tuning regulator for ARMAX-systems will be described in Section 7.
Keywords: adaptive prediction; stochastic complexity; recursive estimation; L-mixing pro-
cesses; asymptotic covariance; stochastic adaptive control.

1 Introduction

The ultimate objective of this paper is to develop new techniques for the analysis of performance
degradation due to statistical uncertainty for a wide class of linear stochastic systems. Perfor-
mance degradation due to statistical uncertainty, called regret, following [46], can be computed
at a single time moment, yielding instantaneous regret, or it can be summed over time, yielding
cumulative regret. The objective of the paper is to develop new techniques that can be used for
analyzing the pathwise (almost sure) asymptotics of the cumulative regret for a class of adaptive
prediction and stochastic adaptive control problems.

A number of examples on the interaction of identification and control are available in the
identification for control literature, see [29, 40, 41]. While the above papers contain funda-
mentally new ideas, the analysis that they present contains heuristic elements. In particular,
they assume the independence of actually weakly dependent quantities in order to simplify the
computation of the instantaneous regret. The present paper lays the foundations for a rigorous
discussion of these heuristic arguments. Special examples of these new technical tools have been
developed in the context of adaptive prediction of ARMA-processes in [24].

The immediate technical objective is a detailed analysis of the Djereveckii-Fradkov-Ljung
scheme with enforced boundedness, given as Algorithm DFL, (3.53)-(3.54). This is a practically
useful recursive estimation method introduced in [11, 12, 51] with a wide range of applications,
see [3, 53]. The algorithm in its original form is given under (3.50) and (3.51) which is a poten-
tially divergent procedure. To ensure convergence the original method is modified by enforced
boundedness, a device that has been widely used in practice and rigorously analyzed in [19].
The study of the DFL scheme is reduced to the study of two related stochastic approximation
methods Algorithm DR (discrete-time recursion) and Algorithm CR (continuous-time recursion),
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described in Section 3. The conditions under which these methods are analyzed are very close
to what we had in [19]. However, a critical condition imposed on the initialization of the process
has been significantly simplified. Our conditions will be compared with other conditions used
in the literature, in particular with those of [3], with emphasis on the so-called ”boundedness-
condition”.

Asymptotic properties of recursive estimation processes are established in classical theory by
using a series of approximations (see e.g. [54]). Thus we get a standard approximation of the
error term, see e.g. [65] for a lucid exposition, for which limit results are easily established. Tight
control of the difference between the estimation error and its standard approximation, that will
be referred to as residuals, is crucial in the analysis of performance degradation due to statistical
uncertainty, see [24].

The main technical advance of the present paper is a set of strong approximation theorems
for three closely related recursive estimation algorithms, given as Theorems 4.1-4.3 of Section
4, in which, for any q ≥ 1, the Lq-norms of the residual terms are shown to tend to zero with
rate N−1/2−ε with some ε > 0. This is a significant extension of a previous result given in [19],
where only the rate of convergence for the Lq-norms of the estimation error has been established
and the explicit approximation of the estimation error and the residual term is not discussed at
all. It extends also the result of [22] on the residual of the recursive prediction error estimator
for ARMA-processes. The proof is quite demand in g: in addition to some basic inequalities
developed in [17] the proof relies on [19] and uses a non-trivial moment inequality for weighted
multiple integrals of L-mixing processes given in [21]. Preliminary versions of the results of
Section 4 have been formulated in [20].

In comparison the material of Section 5 and 6 are relatively straightforward corollaries de-
mand in g numerous small steps, though. In Theorem 5.1 a standard transform of the estimation-
error process for the basic recursive estimation method, Algorithm CR, will be shown to be
L-mixing, while in Theorem 6.2 the asymptotic covariance-matrix of the estimator for the same
method will be given.

The significance of the results of the present paper is demonstrated by describing two ap-
plications in Section 7. In the first example the pathwise cumulative regret is quantified for an
on-line adaptive predictor of multi-variable linear stochastic systems. In the second example a
similar measure of performance degradation for the minimum-variance self-tuning regulator is
computed. Both applications follow the arguments of [24], but heavily rely on the results of
the present paper. A further application for indirect adaptive control of multi-variable linear
stochastic systems is given in [27]. We think that the results are taylored to the needs of the
users and they will pave the way to many further applications.

To motivate the studies carried out in this paper we will first give an illuminative applica-
tion of less known technical results on off-line prediction error identification methods for ARMA
processes. The application, given as Theorem 2.1, provides the answer to a basic problem of
the theory of stochastic complexity, developed by Rissanen, see [58]: the performance degrada-
tion of adaptive predictors. The extension of this results to adaptive predictors using on-line
estimation requires the extension of the relevant technical tools. First a strong approximation
result for recursive prediction error identification methods for ARMA processes will be given
as Theorem 2.4, this is also the starting point for the investigations of the present paper. Two
important corollaries are Theorems 2.5 and 2.6. The relevance of these results in analyzing
performance degradation in the context of on-line adaptive prediction of ARMA-processes will
be described, culminating in Theorem 2.7. This theorem will be considered as a benchmark in
future applications.

2 Adaptive prediction. Basic notions and conditions

An adaptive predictor for ARMA-processes is obtained if we use estimated systems-parameters
in the prediction equation at time n as if it was the true value. Then we may ask, how much
do we lose in prediction accuracy due to the inexact knowledge of the parameters. First we
consider adaptive predictors using off-line estimation and indicate the nature of technical results
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that are needed for the analysis. Then using the strong-approximation result (2.23) we arrive
at analogous technical results for recursive estimation, which in turn can be applied to derive
interesting properties of real-time adaptive predictors.

The set of real numbers will be denoted by IR, the p-dimensional Euclidean space will be
denoted by IRp. The Euclidean-norm of x ∈ IRp will be denoted by |x|. We shall often use
subscripts to indicate partial derivatives.

Let (yn), 0 ≤ n < ∞ be a wide-sense stationary ARMA (p, q) process satisfying the difference
equation

p∑

i=0

b∗i yn−i =
q∑

j=0

c∗jen−j ,

or in shorthand notation B∗y = C∗e, where B∗ and C∗ are polynomials of the backward-shift
operator of degree p and q, respectively. Define the polynomial B∗(z−1) =

∑p
i=0 b∗i (z

−i) and
similarly C∗(z−1). To estimate the system-parameters b∗i , c

∗
j from observed data (yn) using the

prediction error method the following technical assumption is assumed.

Condition 2.1 The polynomials B∗, C∗ are stable and relative prime, b∗0 = c∗0 = 1 and b∗p 6=
0, c∗q 6= 0.

The condition b∗p 6= 0, c∗q 6= 0 has been assumed to allow the extension of our results to cases
when the degree of one of the polynomials B∗ or C∗, but not both is overestimated. The relevant
work that we use is [1]. To characterize the noise-process we shall need the following definition
that has been introduced in [17].

Definition 2.1 We say that a discrete-time IRp-valued stochastic process (un) is M -bounded if
for all 1 ≤ q < ∞

Mq(u) := sup
n≥0

E1/q|un|q < ∞. (2.1)

In this case we also write un = OM (1). For a stochastic process (zn), n ≥ 0 and a positive
sequence (cn) we write zn = OM (cn) if un = zn/cn = OM (1).

A basic tool that we will use is the theory of L-mixing processes, elaborated in [17] and used
to solve some hard problems in system identification, see [18, 19, 22, 38, 43]. This concept is
a generalization of what is called ”exponentially stable processes” in the system-identification
literature, see Definition 3.1 in 8.3 of [6] or [53]. We give the definition here for discrete time
processes. Let a probability space (Ω,F , P ) be given together with a pair of families of σ-algebras
(Fn,F+

n ), n = 0, 1, ... such that (i) Fn ⊂ F is monotone increasing (ii) F+
n ⊂ F is monotone

decreasing (iii) Fn and F+
n are independent for all n. For n < 0 we set F+

n = F+
0 .

Definition 2.2 A stochastic process u = (un), n = 0, 1, ... is L-mixing with respect to (Fn,F+
n )

if it is Fn-adapted, M -bounded and with τ = 0, 1, ... and

γq(τ, u) = γq(τ) = sup
n≥τ

E1/q|un − E (un|F+
n−τ )|q,

we have

Γq = Γq(u) =
∞∑

τ=0

γq(τ) < ∞. (2.2)

The process u is L+-mixing if in addition for all q ≥ 1 there exist Cq, cq > 0 such that for all
non-negative integers τ

γq(τ, u) ≤ Cq(1 + τ)−1−cq .

Discussion of L-mixing. The prime example for L-mixing processes is a sequence of i.i.d. random
variables with finite moments of all order. The response of an exponentially stable linear filter,
with an L-mixing process as its input, is L-mixing. Products of L-mixing processes are also
L-mixing. These properties make sure that the verification of L-mixing is typically easy in
problems of system identification. The same invariance properties hold for the class of L+-
mixing processes. For ”exponentially stable processes” we would require that γq(τ) converges to
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0 geometrically fast, at least for some values of q, typically for q = 4. We shall need conditions
for higher order moments to derive sharp bounds for the error terms in certain uniform laws of
large numbers.

Condition 2.2 The system-noise process (en), 0 ≤ n < ∞, defined over an underlying
probability-space (Ω,F , P ), is an M -bounded process. Moreover there is an increasing sequence
of σ-fields (Fn), 0 ≤ n < ∞, (Fn) ⊂ F , such that (en) is a martingale-difference process with
constant conditional variance:

E(en|Fn−1) = 0, E(e2
n|Fn−1) = σ2 = const.

almost surely. Finally, we assume that (en) is L-mixing with respect to a pair of families of
σ-algebras (Fn,F+

n ).

It follows that (en) is a wide-sense stationary orthogonal process. Conditions 2.1, 2.2 together
will be called the standard conditions for ARMA-processes.

Discussion of the moment-condition. The difference between our conditions and conditions given
in standard works such as [6] or [35] is that there only the condition

M4(e) := sup
n≥0

E1/4|en|4 < ∞.

is required. See the comment to Definition 3.1 in 8.3 of [6], or condition (4.1.20) of [35]. Thus our
condition is much stronger, but our conclusions given in Theorem 2.2 will be also significantly
stronger than the results of [6] and [35] given in terms of classical concepts such as strong con-
sistency, central limit theorem, or the law of iterated logarithm, which all follow from our result
and the corresponding result for martingales. M -boundedness could be relaxed by requiring the
uniform boundedness of moments of sufficiently high order, however the order of the moments
would depend on the order of the ARMA-process, i.e. on p and q. This is due to the fact that in
our proof we rely on Kolmogorov’s continuity theorem for random fields to get sharp bounds for
the error terms in uniform laws of large numbers, which requires the existence of finite moments
up to an order strictly greater than (p + q) in the present application, see Theorem 8.3 of the
Appendix.

Set θ∗ = (b∗1, ..., b
∗
p, c

∗
1, ..., c

∗
q)T . Let DC ⊂ IRq denote the set of vectors (c1, ..., cq) such that

the corresponding polynomial C∗ is stable, let DB = IRp and let

Dθ = DB ×DC ⊂ IRp+q.

Let Dθ0 ⊂ Dθ be a compact domain such that θ∗ ∈ intDθ0. Then the prediction-error method
for estimating the parameter θ∗ is defined as follows (cf. e.g. [6, 35]): first take an arbitrary
θ ∈ Dθ0 and define an estimated prediction error process ε = (εn(θ)) by the inverse equation

Cε = By (2.3)

using zero initial conditions. Define the cost-function

VN (θ) =
1
2

N∑
n=1

ε2
n(θ).

Minimizing VN (θ) over Dθ0 yields an estimate θ̂N .
A precise definition of θ̂N taking into account the possibility of the existence of several local

minima can be given as follows: let Ω′ ⊂ Ω be a measurable set such that the equation

∂

∂θ
VN (θ) = 0

has a unique solution in the interior of Dθ0 denoted by intDθ0 on the event Ω′ ⊂ Ω. Then this
solution will be accepted as θ̂N on Ω′, while θ̂N is defined as an arbitrary Dθ0-valued random
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variable on Ω \ Ω′. It can be shown that we can take Ω′ so that P (Ω′) > 1 − CqN
−q for any

q > 0, see Lemma 2.1 [18], the proof of which is partially based on [1].

Remark. The uniqueness result of [1] remains valid if we redefine Dθ so that the degree of one of
the polynomials B∗ or C∗, but not both is overestimated. This is why b∗p 6= 0, c∗q 6= 0 has been
assumed in Condition 2.1.

The quantity to be studied in the context of adaptive prediction is the prediction error
εn(θ̂n−1). We ask how much do we lose in prediction accuracy due to the statistical uncertainty
present in θ̂n−1. A basic result says that, assuming that the standard conditions, Conditions 2.1,
2.2, are satisfied then the excess in mean prediction error, also called the regret, see [46], satisfies

E(ε2
n(θ̂n−1))− e2

n) =
σ2(e)

n
(p + q)(1 + o(1)). (2.4)

This result is given in [24] and, under different conditions in [64]. It extends the result of [8]
for AR-processes. A similar result for the cumulative regret for Gaussian linear regression was
proved in [56] (see also Theorem 5.3 in [58]).

Summation over n in (2.4) gives that the left hand side is asymptotically equivalent to
σ2(e)(p+q) log N . It has been shown in Theorem 1.1. of [24] that we can remove the expectation
operator and we get the following pathwise result for the cumulative regret:

Theorem 2.1 Assume that the standard conditions, Conditions 2.1, 2.2, are satisfied. Then

lim
N→∞

1
log N

lim
N→∞

N∑
n=1

(ε2
n(θ̂n−1)− e2

n) = σ2(e)(p + q) a.s. (2.5)

This result, under different conditions, was given for AR-processes in [36] and [37]. The much
more difficult ARMA case was solved in [24] and [64], using different conditions and different
methods. Note that classical limit theorems are not suitable to derive (2.5). Both results, (2.4)
and (2.5) play prominent role in the theory of stochastic complexity. The quantity

C1,N =
N∑

n=1

ε2
n(θ̂n−1) (2.6)

is called a predictive stochastic complexity in [58].

Technical tools: strong approximations. Now we come to some technical details that are essential
in the proof of the above results. A key point is a characterization of the estimation error process
which is more accurate than previously known results. Define the asymptotic cost function by

W (θ) = lim
n→∞

1
2
E ε2

n(θ).

In the Gaussian case this is the asymptotic log-likelihood function modulo constants. It is easy
to see that Wθ(θ∗) = 0, where θ denotes differentiation with respect to θ. Also it is well-known
that

R∗ = Wθθ(θ∗) = lim
n→∞

E εθn(θ∗)εθn(θ∗)T

is nonsingular and in fact positive definite. Then we have the following representation of the
estimation error (cf. [18]):

Theorem 2.2 Assume that the standard conditions for ARMA-processes, Conditions 2.1, 2.2,
are satisfied, then we have

θ̂N − θ∗ = −(R∗)−1 1
N

N∑
n=1

εθn(θ∗)en + OM (N−1). (2.7)
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The main contribution of Theorem 2.2 is that the residual term has been shown to be of
the order of magnitude OM (N−1). This is an improvement over the classical results of [50, 59]
in the ARMA-case. The significance of this improvement is easily demonstrated: the residual
term is sufficiently small so that limit theorems such as LIL and invariance principles for the
estimator process can be immediately derived using martingale limit theory (cf. [33]). But the
real motivation behind Theorem 2.2 had been the need to verify Rissanen’s tail-condition for
Gaussian ARMA-processes, introduced in the seminal paper [57], which in turn can be used
to derive a lower bound for the cumulative loss in performance of any adaptive predictor for
Gaussian ARMA-processes (cf. [26]).

Discussion of mixing conditions. There are a number of other notions of mixing. The best
known notion is φ-mixing, an excellent and concise introduction to which is given in Chapter
7.2 of [15]. The measure of mixing for two σ-algebras G and H is defined for any 1 ≤ p ≤ ∞ as
follows:

φp(G|H) = sup
A∈G

||P (A|H)− P (A)||p, (2.8)

where ||ξ||p denotes the Lp norm of the random variable ξ. It can be shown that for p = 1 we
have 1

2φ1(G|H) = α(G,H), where

α(G,H) = sup
A∈G,B∈H

|P (AB)− P (A)P (B)| (2.9)

is the familiar measure of strong mixing. Similarly, we have for p = ∞
φ∞(G|H) = sup

A∈G,B∈H,P (B)>0

|P (A|B)− P (A)| (2.10)

which is the familiar measure of uniform mixing. A stochastic process (xn) is then φp-mixing if
with

φp(n) = φp(Fn|F+
n ),

where now Fn = σ{xi, i ≤ n}, F+
n = σ{xi, i ≥ n}, we have limn→∞ φp(n).

In contrast to L-mixing, the verification of even the weakest form of φ-mixing, which is called
for historical reasons strong mixing or α-mixing, is non-trivial even for Gaussian processes (see
Chapter 17 of [42]). On the other hand, measurable static functions of φ-mixing processes are
φ-mixing, while this may not be the case e.g. for discontinuous functions of L-mixing processes.
(For a positive statement see [23] Theorem II.7).

¿From the point of view of usefulness both notions are equally useful for off-line estimation.
Namely, the key technical device in analyzing off-line estimators is a kind of improved Hölder-
inequality, see Lemma 8.1 of the Appendix, or Chapter 7.2 of [15], or Appendix III of [33].
In fact, it can be shown that the theorem remains valid even if the assumption that (en) is
L-mixing is completely removed, since the remaining conditions imply the validity of certain
improved Hölder-inequalities. The situation is quite different for recursive estimation methods,
where L-mixing is heavily exploited. Further discussion on this will be given in Section 3.

The first step in the proof of Theorem 2.1 is to consider a second-order Taylor-series ex-
pansion of the terms on the left hand side. The estimation error process is handled using a
standard transformation in the stochastic approximation literature. Define a piecewise constant
continuous-time extension of θ̂n, and, denoting the time variable by t, introduce a new process
by first normalizing (θ̂t− θ∗) to t1/2(θ̂t− θ∗) and then using an exponential change of time scale
t = es. Thus we get a new process

ψs = es/2(θ̂es − θ∗). (2.11)

A key observation is that the transformed process (ψs) is L-mixing with respect to (Fes ,F+
es).

For the definition of L-mixing in continuous time see the next section. The proof of this fact is
based on Theorem 2.2 and the following simple result given as Theorem 3.3 in [24]:

Lemma 2.1 Let (ut), t ≥ 0 be a zero-mean L-mixing process with respect to some pair of families
of σ-algebras (Ft,F+

t ). Let

xT = T−1/2

∫ T

1

utdt. (2.12)
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Then the process (ys) = (xes) is L-mixing with respect to the pair of families of σ-algebras
(Fes ,F+

es).

With this observation it can be shown that the process εn(θ∗) and its gradient are asymptotically
independent of (θ̂N −θ∗), which is exploited in proving (2.4). On the other hand it can be shown
that the result given in (2.5) is essentially a law of large numbers in the new time-scale.

Now we come to the extensions of the above results for the case of on-line or recursive
estimation of θ∗. The most widely used recursive estimation methods for ARMA-processes is the
recursive prediction error (RPE) method, which in the case of Gaussian-processes reduces to the
recursive maximum-likelihood (RML) method, see [6, 53]. This procedure serves as a benchmark
for the general theory to be developed in Section 3, in particular it is a prime example for the
Djereveckii-Fradkov-Ljung scheme or DFL scheme. Both for theoretical and practical reasons

we consider recursive prediction error processes ̂̂
θn using a resetting mechanism to enforce the

boundedness of the estimator. The convergence analysis for such a procedure has been given in
Theorem 4.2 of [19].

We will now give the details of the RPE method for ARMA processes and a set of technical
conditions that we use to guarantee convergence. The conditions are simpler than those given
in Section 4 of [19]. We will shortly indicate how the present conditions imply the conditions
given for the DFL scheme in the next section. Most of the discussion of these conditions will be
deferred to the next section. The definition of the RPE-method without resetting is

̂̂
θn = ̂̂

θn−1 − 1
n

( ̂̂
Rn−1)

−1 ∂

∂θ
εn · εn (2.13)

̂̂
Rn = ̂̂

Rn−1 +
1
n

((
∂

∂θ
εn)(

∂

∂θ
εn)T − ̂̂

Rn−1) (2.14)

with some initial conditions ( ̂̂θ0,
̂̂
R1), where εn and ∂

∂θ εn denote on-line estimates of ε̄n(θ∗) and
of ∂

∂θ ε̄n(θ)|θ=θ∗ . These are obtained by using the most recent estimations of B∗ and C∗ in the
linear filters defining the current values of ε̄n(θ∗) and of ∂

∂θ ε̄n(θ)|θ=θ∗ . Thus e.g. εn is defined
by the time-varying filter

( ̂̂
Cn−1ε)n = ( ̂̂

Bn−1y)n. (2.15)

For further details see [53]. Note that, in contrast with [19], the recursion is initiated at time
n = 1 rather than at time n = 0 to ensure a more convenient connection with continuous-time
methods.

The RPE method without resetting is a special case of a general recursive estimation scheme,
called the DFL scheme, to be described in details in the next section, see (3.50)-(3.51). Note
that together with θ∗ we also estimate the matrix R∗.

It is well-known from simulation examples that the RPE error method may diverge, unless
some precaution is taken. This difficulty is often dealt with a controversial ”boundedness condi-
tion” first formulated in [51]. This will be discussed in detail in the context of the DFL-method.
A convergent truncated RPE method has been given in Section 4 of [19], which we now describe.
Let

DR = IR+(p× p), and D = Dθ ×DR,

where IR+(p × p) denotes the set of symmetric, positive definite p × p matrices. Let Dθ0 ⊂ Dθ

be a compact set containing θ∗ in its interior and similarly let DR0 ⊂ DR be a compact set
containing R∗ in its interior and let D0 = Dθ0 ×DR0.

Resetting: If at any time n the next estimator ( ̂̂θn+1,
̂̂
Rn+1) would leave D0 then we redefine its

value by resetting it to the initial value, i.e.

for ( ̂̂θn+1,
̂̂
Rn+1)ε| intD0 reset as ( ̂̂θn+1,

̂̂
Rn+1) := ( ̂̂θ0,

̂̂
R0). (2.16)

To avoid being trapped to the boundary of the truncation domain the initial value ( ̂̂θ0,
̂̂
R0) must

be aligned to Dθ0 ×DR0, as described in Condition 3.4. This condition is given in terms of the
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so-called associated ODE. Define for θ ∈ Dθ

R∗(θ) = lim
n→∞

Eεθn(θ)εθn(θ)T . (2.17)

Then obviously R∗ = R∗(θ∗). With this notation the associated ODE, with the time-variable v,
is defined as

θ̇v = −R−1
v

∂

∂θ
W (θv),

Ṙv = R∗(θv)−Rv. (2.18)

The right hand side is defined in Dθ×DR. This is the usual way of defining the associated ODE,
see [3, 53]. However in [19] as well as later in this paper we will define the associated ODE by
using a change of time scale t = ev.

The condition ensuring that resetting works for the general recursive estimation methods
given in Section 3, including the DFL scheme is Condition 3.4. Following the arguments of
Section 4 of [19] it is easy to see that the first part of Condition 3.4, requiring a certain kind
of asymptotic stability of the associated ODE, follows for the RPE method. Namely, it follows
directly from [1] that (2.18) has a unique stationary point in Dθ × DR, which is (θ∗, R∗). It
is also easy to see that this equilibrium point is asymptotically stable, since the eigenvalues of
the Jacobian-matrix of the right hand side of the ODE at (θ∗, R∗) are all −1. Now it is easy to
show that the associated ODE is globally asymptotically stable in Dθ ×DR. For the proof we
need the observation that W (θv) is non-increasing as long as Rv is positive definite and Rv is
bounded and positive definite as long as θv belongs to a fixed compact set.

Let xn = ( ̂̂θn,
̂̂
Rn) denote the estimator at time n, let z = (θ, R) denote a running parameter

and let z(v, u, ξ) denote the solution of (2.18) with initial value ξ at time u. Then it follows that
for every ξ ∈ D0, v ≥ u ≥ 0 the solution z(v, u, ξ) ∈ D is defined for 1 ≤ s ≤ t < ∞, it converges
to x∗(θ∗, R∗) for t →∞ and we have with some C0 and α = 1− c with arbitrary small c > 0

‖ ∂

∂ξ
z(v, u, ξ)‖ ≤ C0e

−α(v−u). (2.19)

It follows, using a change of time-scale t = ev, that the first part of Condition 3.4 is satisfied.
Here ‖ · ‖ denotes the operator norm of a matrix.

To ensure the validity of the second part of Condition 3.4 we have to assume that some a

priori knowledge of the system parameters θ∗ and the Hessian R∗, say ξ = ( ̂̂θ0,
̂̂
R0) are available.

They can be obtained e.g. from an off-line estimation.

Condition 2.3 Let D0 = Dθ0 × DR0 ⊂ Dθ × DR be a compact truncation domain such that
x∗ = (θ∗, R∗) ∈ int D0. (i) It is assumed that there exists a compact convex domain D′

0 ⊂ D
such that

z(v, u, x) ∈ D′
0 for x ∈ D0 and z(v, u, x) ∈ D for x ∈ D′

0 for all v ≥ u ≥ 0. (2.20)

(ii) It is assumed that we have an initial estimate ξ = ( ̂̂θ0,
̂̂
R0) such that for any v ≥ u ≥ 0 we

have z(v, u, ξ) ∈ int D0.

Remark. Since our objective is to restate Theorem 4.2 of [19], part (iii) of Condition 3.4 of the
present paper need not be verified at this time, since it was not required in [19]; it is special
addition for the present paper.

To ensure the stability of the time-varying filter (2.15) given as ( ̂̂
Cn−1ε)n = ( ̂̂

Bn−1y)n we
need a second condition imposed on the truncation domain (cf. Condition 3.7 of Section 3
given for the DFL method). Let us consider a fixed state-space realization of the inverse system
(2.3) and let the state-transition-matrix be denoted by C̃. In [19] this is given as the so-called
companion-matrix corresponding to the polynomial C (see Condition 4.5 of [19]). Let DB0 ⊂ DB

and DC0 ⊂ DC be compact domains and let

Dθ0 = DB0 ×DC0.

Now Condition 3.7 would read as follows:
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Condition 2.4 Let DC̃0 denote the set of matrices C̃, when C is taken from DC0. Then D
C̃0

is jointly stable in the sense that there exists a single q× q symmetric positive definite matrix U
and 0 < λ < 1 such that for all C̃ ∈ DC̃0

C̃T UC̃ ≤ λU.

It follows that there exists some c > 0 such that for any sequence (C̃n) with C̃n ∈ DC̃0 we have

||C̃n...C̃0|| ≤ cλn/2. (2.21)

A discussion of the joint stability condition. Condition 2.4 above is required only to ensure that
(2.21) holds. In the system-identification literature it had been occasionally implicitly assumed
that the individual stability of each C̃ ∈ DC̃0 implies (2.21), see e.g. [34]. This is easily seen to be
wrong. One way to ensure Condition 2.4 is to choose the truncation domain D0 small, but this is
obviously not practical. A better way is to use a suitable realization of the inverse system (2.3).
To indicate the potential of alternative realizations let us consider a Gilbert-Kalman realization
of the inverse system (see [44]). Assume that the roots of the polynomial C = C(z−1) are all
real and simple and let them be denoted by λi. Then we will have

C̃ = diag(λi),

and obviously any compact set of matrices DC̃0 is jointly stable. Potentially useful alternative
realizations are given in [55]. A second way of ensuring the validity of (2.21) is given in [3]. This
will be discussed in connection with the DFL scheme in the next section.

Finally we will need two additional conditions for the noise process. First, the M -boundedness
of (en) is further strengthened by assuming the existence and boundedness of certain exponential
moments.

Condition 2.5 We assume that |en|2 is in class M∗, i.e for some ε > 0 we have

sup
n

E exp ε|en|2 < ∞.

This condition is certainly satisfied if (en) is a stationary Gaussian process. The role of this
condition will be discussed in Section 3 in the context of the DFL scheme.

Secondly, we need to be more specific on the mixing rate of (en). The condition to follow is
motivated by Lemma 3.1 [24], which states for continuous-time L-mixing processes (cf. Definition
3.2) that, if (ut) is an L-mixing process then, γq(τ, u) ≤ 4Γq(u)/τ for all q ≥ 1 and τ ≥ 0. The
validity of a slightly stronger inequality is required by the following condition in discrete time
(cf. Condition 3.9 of Section 3 given for the DFL scheme):

Condition 2.6 We assume that (en) is L+-mixing with respect to a pair of families of σ-algebras
(Fn,F+

n ).

The role of this condition is in the analysis of the difference between the ”frozen parameter”
process εn(θ) evaluated at θ = θ̂n and its on-line estimate εn, see [19], Lemma 5.6 restated as
Lemma 3.2 of the present paper. From the purely technical point of view, L+-mixing is used in
[19], Theorem 6.1. In view of the general theorem for the DFL scheme, given as Theorem 3.3,
we get the following result (see also Theorem 4.2 of [19]) :

Theorem 2.3 Let (yn) be an ARMA-process satisfying the standard conditions, Conditions 2.1,
2.2. Consider the recursive prediction error estimator defined by (2.13), (2.14), modified by a
resetting mechanism given under (2.16). Let the truncation domain be of the form

D0 = Dθ0 ×DR0 with Dθ0 = DB0 ×DC0.

Assume that D0 satisfies Condition 2.3 and DC0 satisfies Condition 2.4. Finally let the inno-
vation process satisfy the additional conditions Condition 2.5 and 2.6. Then for the recursive

estimators ( ̂̂θN ,
̂̂
RN ) we have

̂̂
θN − θ∗ = OM (N−1/2) and ̂̂

RN −R∗ = OM (N−1/2). (2.22)
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One of the special features of this result is that the moments of the estimation error are bounded
from above. While the above theorem is certainly of interest, it is obviously much weaker than
the characterization of the off-line estimator given in Theorem 2.2. But Theorem 2.3 is a key
technical tool in deriving a strong approximation theorem relating the recursive prediction error
estimator to the off-line prediction error estimator. This result is given in [22], stating that under
the conditions of Theorem 4.2 of [19] (and thus under the conditions of Theorem 2.3) we have

̂̂
θN − θ̂N = OM (

log N

N
). (2.23)

Combining (2.23) with Theorem 2.2 we get:

Theorem 2.4 Under the conditions of Theorem 2.3 we have

̂̂
θN − θ∗ = −(R∗)−1 1

N

N∑
n=1

εθn(θ∗)en + OM (
log N

N
). (2.24)

This strong approximation result provides a very precise characterization of ̂̂
θN . The control of

moments of the residual term is an essential feature of the result that is very much exploited in
deriving Theorems 2.7 and 2.7. A direct corollary of the above theorem is the following:

Theorem 2.5 Under the conditions of Theorem 2.3 we have

EN( ̂̂θN − θ∗)( ̂̂θN − θ∗)T = σ2(R∗)−1 + O(N−1/2 log N). (2.25)

Finally, taking into account Theorem 2.2, (2.23) and Lemma 2.1 we get:

Theorem 2.6 Under the conditions of Theorem 2.3 the transformed process

ψs = es/2( ̂̂θes − θ∗) (2.26)

is L-mixing with respect to (Fes ,F+
es).

The above three results, Theorems 2.4, 2.5 and 2.6, are the key tools in extending Theorem
2.1 to adaptive predictors using recursive estimators rather than off-line estimators (cf. [24]).
Thus we get the following key result:

Theorem 2.7 Under the conditions of Theorem 2.3 we have

lim
N→∞

1
log N

lim
N→∞

N∑
n=1

(ε2
n( ̂̂θn−1)− e2

n) = σ2(e)(p + q) a.s. (2.27)

In addition, the above proposition remains valid, if we replace εn( ̂̂θn−1) by its on-line computed
approximation εn, see (2.15):

Theorem 2.8 Under the conditions of Theorem 2.3 we have

lim
N→∞

1
log N

lim
N→∞

N∑
n=1

(ε2
n − e2

n) = σ2(e)(p + q) a.s. (2.28)

The main contribution of the present paper is the extension of the technical result given as
Theorems 2.4, 2.5 and 2.6 to general recursive estimation schemes that include the DFL scheme
with enforced boundedness, given as (3.53)-(3.54). The extension of Theorem 2.4 uses the results
of [17] and [19] but requires an additional technical tool given in [21]. This extension will be
given in Section 3. The extensions of Theorems 2.5 and 2.6 are obtained using straightforward,
though numerous approximations in Section 5 and 6. The present paper actively uses the results
of [17, 19] and [21]. To facilitate reading, these relevant results are summarized in the Appendix.
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3 General recursive estimation schemes

The prime objective of this section is to formulate a general recursive estimation method, the
Djereveckii-Fradkov-Ljung scheme or DFL scheme with enforced boundedness, together with
conditions that ensure its convergence. It is given as Algorithm DFL under (3.53)-(3.54), devel-
oped in [11, 12, 51], see also the books [3, 13, 53].

But first we present two closely related recursive algorithms: Algorithm CR (continuous-time
recursion), (3.16) and Algorithm DR (discrete-time recursion), (3.34), which can be interpreted
as ”frozen parameter” approximations to the DFL scheme. The main results of the paper
will be formulated and proved for the continuous-time method, Algorithm CR. The connection
between the continuous-time and the discrete-time algorithm is straightforward. In contrast, the
connection between Algorithm DR and the DFL scheme is not straightforward at all, but it has
been worked out in [19], Section 6 and 7. Details will be given while discussing the DFL method.

Our first tentative general method is a continuous-time recursive estimation process without
resetting, given by a random differential equation of the form

ẋt =
1
t
(H(t, xt, ω) + δH(t, ω)), x1 = ξ, (3.1)

defined over the underlying probability-space (Ω,F , P ). Here xt indicates an estimator sequence
and H = (H(t, x, ω)) is a random field defined in [1,∞) × D, where D is a bounded open
domain in IRp ×Ω and δH(t, ω)) is a perturbation term to be described later. The advantage of
continuous time is that some calculations can be carried out more easily than in discrete time.

The technical conditions that we impose on H(t, x, ω) will be tuned to fit the DFL scheme,
given by (3.53) and(3.51) below. A continuous-time example for a random field H(t, x, ω) that
is motivated by the DFL scheme is the following:

H(t, x, ω) = ε(t, x, ω)η(t, x, ω), (3.2)

where ε(t, x, ω) and η(t, x, ω) are stationary, jointly Gaussian-processes, defined by finite-
dimensional stable linear filters applied to a standard Wiener-process (ws):

ε(t, x, ω) =
∫ t

−∞
hε(t− s, x)dws, η(t, x, ω) =

∫ t

−∞
hη(t− s, x)dws, (3.3)

such that in an appropriate state-space representation the state-space matrices corresponding to
the impulse-responses hε(τ, x) and hη(τ, x) are sufficiently smooth functions of the parameter x.
In the recursive maximum-likelihood identification method for discrete-time Gaussian-ARMA-
processes ε(n, x, ω) would be the estimated input noise, with x being the system-parameter and
η(n, x, ω) would be its negative gradient with respect to x, assuming stationary initialization for
both processes. To specify the conditions to be imposed we need some preliminary technical
details. The notion of M -bounded processes will now be extended to parameter-dependent,
continuous-time processes.

Definition 3.1 Let D0 ⊂ IRp be a compact set and let (ut(x)) be an IRk-valued measurable
stochastic process defined on Ω × IR+ × D0, where IR+ = {t : t ≥ 0}. We say that (ut(x)) is
M -bounded (in D0) if for all q with 1 ≤ q < ∞ we have

Mq(u) = sup
t≥0

x∈D0

E1/q|ut(x)|q < ∞. (3.4)

If (ut(x)) is M -bounded then we write = OM (1). We shall use the same terminology if x or t
degenerate into a single point. If ct is a sequence of positive numbers then we write ut(x) =
OM (ct) if ut(x)/ct = OM (1).

The notion of L-mixing will now be extended to parameter-dependent, continuous-time pro-
cesses. Let a probability space (Ω,F , P ) be given together with a pair of families of σ-algebras
(Ft,F+

t ) such that (i) Ft ⊂ F is monotone increasing (ii) F+
t ⊂ F is monotone decreasing and

F+
t is right continuous in t i.e. F+

s = σ{⋃0< ε F+
s+ε} (iii) Ft and F+

t are independent for all t.
For s < 0 we set F+

s = F+
0 .
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Definition 3.2 Let D0 ⊂ IRp be a compact set and let (ut(x)) be an IRk-valued measurable
stochastic process defined on Ω × IR+ × D0. We say that u = (ut(x)) is L-mixing with respect
to (Ft,F+

t ), uniformly in x for x ∈ D0, if it is Ft-progressively measurable, M -bounded (in D0)
and if for all q ≥ 1 with

γq(τ, u) = γq(τ) = sup
t≥τ

x∈D0

E1/q|ut(x)− E (ut(x)|F+
t−τ )|q, τ ≥ 0,

we have
Γq = Γq(u) =

∫ ∞

0

γq(τ)dτ < ∞. (3.5)

We say that (ut(x)), t ≥ 0 x ∈ D0 is L+-mixing with respect to (Ft,F+
t ), uniformly in x for

x ∈ D0, if in addition for all q ≥ 1 there exist Cq, cq > 0 such that for all τ ≥ 0

γq(τ, u) ≤ Cq(1 + τ)−1−cq . (3.6)

The definition extends to parameter-free processes (ut) and to discrete-time processes (un(x)).
In the latter we set

Γq = Γq(u) =
∞∑

τ=0

γq(τ)dτ < ∞. (3.7)

Condition 3.1 The process H = (H(t, x, ω)) is assumed to be defined in Ω × IR+ × D, where
D ⊂ IRp is an open domain, it is three times continuously differentiable with respect to x for
x ∈ D almost surely and for any compact set D0 ⊂ D H and its derivatives up to order 3
are M -bounded in D0. Furthermore (H(t, x, ω)) and its first derivative Hx = (Hx(t, x, ω)) are
L+-mixing with respect to (Ft,F+

t ), uniformly in x ∈ D0.

In [19] we used the finite difference field of H = (H(t, x, ω)), to capture the smoothness of
H(t, x, ω). In general, we considered the process

∆u/∆x (t, x, x + h, ω) = |ut(x + h)− ut(x)|/|h|

defined for t ≥ 0, x 6= x+h ∈ D. We say that u = (ut(x)) is M -Lipschitz-continuous with respect
to x in D0, if the process ∆u/∆x defined above is M -bounded, i.e. if for all 1 ≤ q < ∞ we have

Mq(∆u/∆x) = sup
t≥0

x 6=x+h∈D0

E1/q|ut(x + h)− ut(x)|q/|h| < ∞.

Condition 1.1. of [19] is then following:

Condition H. The process (H(t, x, ω)) and (∆H/∆x(t, x, x+h, ω)) are assumed to be separable
and L+-mixing with respect to (Ft,F+

t ), uniformly in x, x + h ∈ D.

It is easy to see that Condition H is implied by Condition 3.1.
A discussion of L-mixing. We give further details for comparing L-mixing and φ-mixing as

described in Chapter 7.2 of [15]. In L-mixing we consider projections on the relative future
defined by F+

t−τ and the resulting approximation error is

E1/q|ut − E (ut|F+
t−τ )|q ≤ γq(τ, u) (3.8)

for τ ≥ 0. In φ-mixing we consider projections on the past and the corresponding error from the
mean, defined as

||P (A|H)− P (A)||p (3.9)

for A ∈ G. Assuming that there is a random variable Φ such that

||P (A|H)− P (A)|| ≤ Φ (3.10)
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for all A ∈ G we have the following proposition (see Proposition 2.6, (2.23) of Chapter 7.2 of
[15]): let Z be a G-measurable random variable such that ||Z||s is finite and let r, s > 1 be such
that r−1 + s−1 = 1. Then

||E(Z|H)− E(Z)||p ≤ 2||Φ||1/r
p ||E(|Z|s|H)||1/s

p . (3.11)

Now if (ut), t ≥ 0 is L-mixing with respect to (Ft,F+
t ), then taking the conditional expectation

of ut − E (ut|F+
t−τ ) with respect to Ft−τ (cf. (3.8)), we get by Jensen’s inequality and the

assumed independence of Ft−τ and F+
t−τ

E1/q|E (ut|Ft−τ )− E (ut)|q ≤ γq(τ, u). (3.12)

In this respect the two notions of mixing lead to similar conclusions.
We will need to strengthen the condition on the M -boundedness of Hx as follows for reasons

that will be discussed later, following Condition 3.8.

Condition 3.2 H(t, x, ω) is piecewise continuous in t almost surely and for any compact set
D0 ⊂ D there exists a random variable Lt = Lt(ω) ≥ 0 such that for all x ∈ D0

|Hx(t, x, ω)| ≤ Lt(ω)

and here Lt is in class M∗, i.e. for some ε > 0 we have

sup
t

Eexp(εLt) < ∞. (3.13)

In [19] we had a weaker condition (see Condition 1.2 of [19]):

Condition L H(t, x, ω) is piecewise continuous in t and for any compact set D0 ⊂ D Lipschitz-
continuous in x for x ∈ D0 almost surely with a (t, ω)-dependent Lipschitz constant Lt = Lt(ω) ≥
0, i.e. for x, x′ ∈ D0 we have

|H(t, x, ω)−H(t, x′, ω)| ≤ Lt(ω)|x− x′|,

where Lt is in class M∗.
Assuming that (δH(t, ω)) is piecewise continuous in t almost surely, a solution (xt) of (3.1)

exists almost surely in some finite or infinite interval. A central role in the analysis of (xt) is
played by the mean-field of H(t, x, ω). To simplify the presentation it is assumed that the mean-
field is essentially independent of t, but a small perturbation is allowed: we have EH(t, x, ω) =
G(x) + δG(t, x), where δG(t, x) is small in a sense to be specified below.

Condition 3.3 We have for any compact set D0 ⊂ D and t ≥ 0, x ∈ D0

EH(t, x, ω) = G(x) + δG(t, x),

where δG(t, x) = O(t−1/2−ε) uniformly in x ∈ D0, with some ε > 0. G(y) has continuous and
bounded partial derivatives up to third order. Finally, we assume that

G(x) = 0 (3.14)

has a unique solution x∗ in D.

Remark. In [19] the slightly weaker condition δG(t, x) = O(t−1/2) has been used (see Condition
1.3 of [19]). Also only differentiability up to order 2 was required.

Let us now consider the ordinary differential equation, the so-called associated ODE:

ẏt =
1
t
G(yt), ys = ξ, s ≥ 1. (3.15)

Under the condition above (3.15) has a unique solution in some finite or infinite interval, which
we denote by y(t, s, ξ). It is well-known that y(t, s, ξ) is a twice continuously differentiable
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function of ξ. The celebrated ODE-principle states that the solution trajectories of the random
differential equation (3.1), under additional conditions, follow the solution trajectories of the
associated ODE (3.15).

Interpreting (3.1) as a continuous-time stochastic approximation method for solving the non-
linear algebraic equation G(x) = 0 an obvious difference compared to classical theory, (see
[54]), is that G is not defined on the whole space. Thus we are lead to the study of recursive
estimation methods constrained to a fixed domain D. In fact for theoretical reasons it is better
to assume that the estimator process is constrained to a compact domain D0 ⊂ D. One way
to enforce boundedness of the estimation process is to restart it whenever it would leave D0.
Such a truncated version of (3.1) is described by Algorithms CR below, following [19]. A short
discussion on the resetting mechanism to follow will be given in the context of the DFL scheme.

Algorithm CR. Consider a continuous-time recursion given by a random differential equation

ẋt =
1
t
(H(t, xt, ω) + δH(t, ω)), x1 = ξ (3.16)

combined with the following resetting mechanism. Let D0 ⊂ D denote a compact truncation
domain such that x∗ ∈ int D0. Let us initialize (3.16) at some time σ ≥ 1 and let xσ =
ξ ∈ intD0. Let

τ(σ) = min{t : t > σ, xt ∈ ∂D0}, (3.17)

where ∂D0, denotes the boundary of D0. Then we reset x to x1 = ξ, which is formally stated
by requiring that the right hand side limit of xt at t = τ = τ(σ) will be ξ:

xτ+ = ξ. (3.18)

Thus we get a piecewise continuous trajectory (xt) defined in some finite or infinite interval.

Remark. An alternative resetting mechanism, used in the analysis of discrete time processes, is
obtained by putting

xt = ξ for n < t ≤ n + 1 if xτ ∈ ∂D0 for n < τ ≤ n + 1 (3.19)

To ensure that the estimator sequence is not bounced back and forth by resetting we need
to impose some condition on the shape and relative position of the truncation domain, x∗ and
ξ, which is captured via the flow induced by the ODE. For this we need to define the star-like
closure of the set D0, relative to x∗, as follows:

D∗
0 = {y : y = x∗ + λ(x− x∗), 0 ≤ λ ≤ 1, x ∈ D0}.

The condition below is a simplified and corrected version of Condition 1.5. of [19]. The
simplification is that the condition on the position of the initial value x1 = ξ has been relaxed,
while the correction is that an additional compact convex set D′

0 containing the truncation
domain has been introduced that has been implicitly used in the final step of the proof of
Theorem 1.1. of [19], see (2.10) of [19].

Condition 3.4 Let D0 ⊂ D be a compact truncation domain such that x∗ ∈ intD0. We assume
(i) there exists a compact convex set D′

0 ⊂ D such that

y(t, s, ξ) ∈ D′
0 for ξ ∈ D0 and y(t, s, ξ) ∈ D for ξ ∈ D′

0 for all t ≥ s ≥ 1. (3.20)

In addition limt→∞ y(t, s, ξ) = x∗ for ξ ∈ D and

‖ ∂

∂ξ
y(t, s, ξ)‖ ≤ C0(s/t)α. (3.21)

with some C0 ≥ 1, α > 0 for all ξ ∈ D′
0 and t ≥ s ≥ 1. (ii). We have an initial estimate ξ = x1

such that for all t ≥ s ≥ 1 we have y(t, s, ξ) ∈ int D0. (iii) Finally, for the star-like closure of
the set D0 we have D∗

0 ⊂ D.
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In [19] we had a the following stability condition (Condition 1.5 of [19] with minor corrections
added):

Condition D (i) For every ξ ∈ D0, t ≥ s ≥ 1 y(t, s, ξ) ∈ D is defined for 1 ≤ s ≤ t < ∞ and
converges to x∗ for t →∞ and we have with some C0, α > 0

‖ ∂

∂ξ
y(t, s, ξ)‖ ≤ C0(s/t)α. (3.22)

(ii) We assume that the initial condition ξ is in int D00, where D00 ⊂ int D0 is a compact
domain which is invariant for (3.15) such that for any t > s ≥ 1

y(t, s, D00) = {y(t, s, x) : x ∈ D00} ⊂ int D00.

Remark. The condition on the existence of D′
0 can be removed if D itself is convex. Indeed, the

ODE given by (3.15) becomes autonomous after a change of time scale t = ev (see below), thus
part (i) of Condition D implies that the set

D′′
0 = {y : y = y(t, s, ξ), ξ ∈ D0, t ≥ s ≥ 1}

is invariant for the ODE. It is easy to see that it is also compact, so we can take for D′
0 the

convex envelope of D′′
0 . We will show below that part (ii) of Condition D follows from part (ii)

of Condition 3.4. Finally, part (iii) of Condition 3.4 is a minor additional technical condition
needed for the present paper.

We shall use subscripts to indicate partial derivatives below. Using a change of time-scale
t = ev, s = eu, the inequality (3.21) is equivalent to the condition that for the solutions of the
differential equation

d

dv
zv = G(zv), zu = ξ, u ≥ 0,

denoted by z(v, u, ξ) we have
‖zξ(v, u, ξ)‖ ≤ C0e

−α(u−v). (3.23)

It can be shown that if for ξ = x∗ we can verify ‖zξ(v, u, x∗)‖ ≤ C ′0e
−α(u−v) with some C ′0 then

(3.23) follows from the remaining components of Condition 3.4. Equivalently, it can be shown
that if ‖yξ(t, s, x∗)‖ ≤ C ′0(s/t)α with some C ′0 then (3.21) follows from the remaining components
of Condition 3.4.

Setting

A∗ =
∂G(x)

∂x

∣∣
x=x∗ , (3.24)

we have yξ(t, s, x∗) = eA∗(log t−log s). The exponent α can be related to the eigenvalues of the
Jacobian-matrix A∗ as follows. Let

α∗ = mini{−<λi(A∗)}, i = 1, ..., p, (3.25)

where λi(A∗) denote the eigenvalues of A∗ and < denotes real part. Then, denoting the spectral
norm by ||.||sp we have ||eA∗(log t−log s)||sp = e−α∗(log t−log s) = (s/t)α∗ . Since for any square
matrix B we have limn ||Bn||1/n = ||B||sp, we conclude that by taking

α = α∗−, (3.26)

where α∗− denotes any number that is smaller than α∗, we have

||eA∗(log t−log s)|| ≤ C0e
−α(log t−log s) = C0(s/t)α (3.27)

with some C0 > 0. If the Jordan-form of A∗ is diagonal, then we can take α = α∗.

Lemma 3.1 Condition 3.4 (ii) implies Condition D (ii).
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Proof: The proof is based on the observation that, introducing the notation Φv(η) = z(v, 0, η),
for an arbitrary set of initial conditions Ξ ⊂ D the set

D00 = {z : z = Φu(η), η ∈ Ξ, u ≥ 0}

is invariant for the associated ODE (3.15). Now let S denote the sphere in the z-space defined
by S = {ζ : |ζ − x∗| = δ > 0} with some fixed small δ and let ζ0 denote the point on S, where
the trajectory z(u, 0, ξ) hits S, say let ζ0 = Φu0(ξ) with some u0 = u(ζ0). Now for any ζ ∈ S
consider the inverse image of ζ under the flow Φ, i.e. consider the set of points

Ξ′(ζ) = {η′ : ζ = Φu(η′), for some u ≥ 0}.

Let now u(ζ) be a continuously differentiable positive function on S, denoting the travel time
from some initial point η up to ζ and define

Ξ = {η : ζ = Φu(ζ)(η), ζ ∈ S}.

Choosing u(ζ) ≤ u(ζ0) for all ζ and ensuring that u(ζ) is very small whenever the angle between
ζ and ζ0 is larger than a fixed positive number the above defined set D00 will satisfy the second
part of Condition D.

Finally, consider the perturbation term δH(t, ω). Following [19] and motivated by the appli-
cation for the DFL scheme, we will use the following condition:

Condition 3.5 (δH(t, ω)) is a measurable M -bounded process, which is piecewise continuous in
t almost surely, moreover there exists an ε > 0 such that for any fixed q > 1 and for any s ≥ 1

sup
s≤σ≤qs

∫ τ(σ)∧qσ

σ

1
r
|δH(r, ω)|dr = OM (s−1/2−ε). (3.28)

It is no loss of generality to assume that ε < 1/2. We assume that the ε-s showing up here and
in Condition 3.3 are identical.

Remark. In [19] the slightly weaker condition

sup
s≤σ≤qs

∫ τ(σ)∧qσ

σ

1
r
|δH(r, ω)|dr = OM (s−1/2) (3.29)

was required (see Condition 1.6 of [19]). This is sufficient to establish a rate of convergence result
for the moments.

The above condition seems to be hard to verify, since it involves τ(σ), which itself is defined
in terms of the process (xt). In fact, the condition seems to be artificially tuned so that the
proof can be carried out. An alternative, seemingly more useful condition, implying Condition
3.5 would be

sup
s≤σ≤qs

∫ qσ

σ

1
r
|δH(r, ω)|dr = OM (s−1/2−ε) (3.30)

which is independent of the stopping time τ(σ)). The latter is certainly satisfied if δH(r, ω) =
OM (r−1/2−ε). The prominent role of Condition 3.5 will become clear in the context of the DFL
scheme, see (3.56) and Lemma 3.2. The following is given in Theorem 1.1 of [19]:

Theorem 3.1 Consider the continuous-time recursive estimation process defined by (3.16) with
the resetting mechanism (3.17) and (3.18). Assume that Conditions 3.1-3.5 are satisfied, more-
over Condition 3.4 is satisfied with α > 1/2. Then the solution (xt) is defined for all t ∈ [1,∞)
with probability 1 and xt = OM (t−1/2). Moreover the following stronger result also holds: for
any fixed 1 < q < ∞ we have

x∗t = sup
t≤s≤qt

|xs| = OM (t−1/2).
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As has been noted in [19], end of Section 2, using the alternative resetting method (3.19) does
not effect the validity of Theorem 1.1
Definition of α. In subsequent analysis a crucial role will be played by the gap between α,
introduced in Condition 3.4 and 1/2, therefore we introduce a separate notation: we write

α = α− 1/2. (3.31)

An example: a recursive estimation method is called a stochastic Newton method if the Jacobian-
matrix of the right hand side of the associated ODE at x = x∗ is −I, where I is an identity
matrix. Then we can take α∗ = α = 1 and α = 1/2.

Let us now consider discrete-time processes of the form

xn+1 = xn +
1

n + 1
(H(n + 1, xn, ω) + δH(n + 1, ω)), x0 = ξ ∈ int D0. (3.32)

Boundedness of the estimator sequence will be enforced by a resetting mechanism. Let D0 ⊂ D
be a compact domain. If xn+1 leaves D0 then we redefine xn+1 to be x0. To formalize this: at
any time n let xn+1− denote the value of x computed at time n + 1 by (3.32) and let

Bn+1 = {ω : xn+1−ε| intD0}. (3.33)

Algorithm DR. A discrete-time recursive estimation process with resetting is defined as follows:

xn+1 = xn + (1− χ
Bn+1)

1
n + 1

(H(n + 1, xn, ω) + δH(n + 1, ω)) + χBn+1(x0 − xn). (3.34)

Remark. Note that the correction term on the right hand side was H(n, xn, ω) in [19]. The
present notation fits the applications better: the estimator based on observations up to time n
is updated by a new observation received at time n + 1.

A standard way of analyzing this algorithm is to use continuous-time imbedding and this
route has been followed in [19]. A more recent approach, in which the error that arises via this
imbedding procedure is eliminated, is a discrete-time ODE method, developed in [25]. Here
we follow the approach of [19], with a minor modifications. Let (Hc(t, x, ω)) be the piecewise
constant continuous-time extensions of (H(n, x, ω)):

Hc(t, x, ω) = H(n, x, ω) for 1 ≤ n ≤ t < n + 1. (3.35)

Define δHc(t, x, ω) in a similar manner. Let the exit time τ(σ) for any non-negative integer σ
be defined as

τ(σ) = min{n : n integer, n > σ, xn−ε| intD0}. (3.36)

Condition 3.6 (δH(n, ω)) is a measurable M -bounded process, moreover there exists an ε > 0
such that for any fixed q > 1 and for any integers s ≥ σ ≥ 1, with [x] denoting integer part, we
have

sup
s≤σ≤[qs]

τ(σ)∧[qσ]∑
r=σ

1
r
|δH(r, ω)|dr = OM (s−1/2−ε). (3.37)

It is easy to see that in the course Condition 3.5 follows with the modified resetting mechanism
(3.19). The following result is an easy corollary of Theorem 3.1 and has been established in [19]
as Theorem 1.2:

Theorem 3.2 Consider the discrete-time recursive estimation process with resetting defined by
(3.34). Let (Hc(t, x, ω)) be the piecewise constant continuous-time extensions of (H(n, x, ω)) de-
fined under (3.35). Assume that Hc(t, x, ω) satisfies Conditions 3.1- 3.4 and the latter condition
is satisfied with α > 1/2. Let δHc(n, ω) satisfy Condition 3.6, with τ(σ) defined as in (3.36).
Then we have xn = OM (n−1/2).
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Let us now consider a general recursive estimation scheme developed in [11, 12, 51], see also
[3, 13, 53], which will be called the Djereveckii-Fradkov-Ljung scheme, or the DFL scheme. Its
basic building block is a parameter-dependent vector-valued process (φn(x)), with x ∈ D ⊂ IRp,
where D is an open domain, defined by the state-space equation

φn+1(x) = A(x)φn(x) + B(x)en, (3.38)

with some non-random initial condition φ1(x), the value of which is often assumed to be zero.
The dimensionality of φn(x) will be denoted by r. In the analysis of [19], as in all other works
on the analysis of the DFL scheme we have to ensure that for any choice of x = xn ∈ D the
time-varying system

φn+1 = A(xn)φn + B(xn)en, φ0 = 0, (3.39)

is bounded input-bounded output stable. This is ensured by the following condition:

Condition 3.7 The functions A(x), B(x) are three times continuously differentiable in D. More-
over, the family of matrices A(x), x ∈ D0, with D0 being the pre-selected truncation domain, is
jointly stable in the sense that there exist a single symmetric positive definite r× r matrix V and
0 < λ < 1 such that for all x ∈ D0

AT (x)V A(x) ≤ λV.

Discussion of the joint stability condition. In the case of recursive estimation of linear stochastic
systems the joint stability condition can be satisfied by an appropriate realization of the state-
system (3.38). Namely, in these cases (3.38) has the structure

φ1,n+1 = A1φ1,n + B1en, (3.40)

φ2,n+1(x) = A2(x)φ2,n(x) + B2(x)φ1,n+1, (3.41)

where φ1,n is independent of x and is observable. Thus it is sufficient to ensure the joint stability
of (3.41), which has an observable input. For any fixed x and non-singular T = T (x) we have
the system-equivalence

( A2(x), B2(x), I ) = ( T (x)A2(x)T−1(x), T (x)B2(x), T (x)−1 ), (3.42)

and the latter realization can also be used to compute φ2,n+1(x). Assume that A(x) is stable for
all x ∈ D. Choosing T (x) so that T (x)A2(x)T−1(x) is a contraction for all x ∈ D and assuming
that T (x) is continuous in x, it is easy to see that Condition 3.7 is satisfied for the transformed
system with any compact D0 ⊂ D. In addition, assuming that (A2(x), B2(x), I) uniquely deter-
mines x, the same holds for the equivalent system ( T (x)A2(x)T−1(x), T (x)B2(x), T (x)−1 ).

Assuming joint stability of (A(x)) it follows that there exists some c > 0 such that for any
sequence (A(xn)) with xn ∈ D0 we have

||A(xn)...A(x0)|| ≤ cλn/2. (3.43)

In fact, this is the key property that we need in the analysis. An alternative method for ensuring
the validity of (3.43) used in [3] is to require that the sequence (A(xn)), or equivalently the
sequence (xn) is slowly-varying. This method will be discussed later.

The input noise (en) is assumed to satisfy two conditions (see Conditions 2.5, 2.6 of [19].)

Condition 3.8 We assume that (en) is a wide-sense stationary process and that |en|2 is in class
M∗, i.e. for some ε > 0 we have

sup
n

E exp ε|en|2 < ∞.
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Condition 3.8 is standard in the Chinese school for recursive estimation (see e.g. [7]) and is
certainly satisfied for wide-sense stationary Gaussian sequences. The weaker condition that (en)
is M -bounded is assumed also in the special case of (3.53), given as Example 1, p. 215 of [3],
(see Condition (A’5) on p. 290 of [3]). The existence of finite moments of all orders for certain
state-variables is required also in the general model of recursive estimation of [3], see Condition
(A’5) on p. 290 of [3].

Discussion of Condition 3.8. Assume δH(r, ω) = 0 identically and that no resetting takes place
in the interval [1, t]. Then we have

xt − yt =
∫ t

1

1
r
(H(r, xr, ω)−G(yr)) dr. (3.44)

Now we can bound the right hand side form above in two ways as

|
∫ t

1

1
r
(H(r, xr, ω)−G(xr)) dr| +

∫ t

1

1
r
L|xr − yr| dr

|
∫ t

1

1
r
(H(r, yr, ω)−G(yr)) dr| +

∫ t

1

1
r
Lr|xr − yr| dr. (3.45)

In both cases we can apply the Bellman-Gronwall lemma. In the first case we need only the
Lipschitz-continuity of G, while H may be even discontinuous, (which is the case e.g. for the
signed LMS methods), but the first term is hard to analyze, unless H is a Markov-process for
any fix x (see Chapter 1 of Part II of [3]). In the second case we need the Lipschitz-continuity
of H and Condition 3.8 has to be imposed on Lr to ensure that the application of the Bellman-
Gronwall lemma gives meaningful result. On the other hand the analysis of the first term is
significantly simpler, since it is essentially the integral of a zero mean L-mixing process.

Condition 3.9 We assume that (en) is L+-mixing with respect to a pair of families of σ-algebras
(Fn,F+

n ).

The role of this condition will be discussed in connection with Lemma 3.2, see also [19], Lemma
5.6 and Theorem 6.1. Now we are ready to define a random field H(n, x, ω) in terms of φn(x)
as follows:

H(n, x, ω) = Q(φn(x)), (3.46)

where for the sake of simplicity Q is a quadratic function from IRr to IRp. An alternative, more
general definition would be

H(n, x, ω) = F (Q(φn(x)), x)), (3.47)

where Q is quadratic, F is linear in Q and three times continuously differentiable in its second
variable x. Also define the mean field

G(x) = lim
n→∞

E Q(φn(x)). (3.48)

It is easy to see that G(x) is well-defined, since φn(x) is asymptotically wide-sense stationary: in
fact φn(x) = φ∗n(x) + OM (βn), where φ∗n(x) is wide-sense stationary and 0 < β < 1 and thus

G(x) = E Q(φn(x)) + O(βn). (3.49)

The estimation problem in the context of the DFL scheme is then to solve the non-linear algebraic
equation

G(x) = 0

based on observations of Q(φn(x)). It is assumed that a unique solution x∗ exists in D and in fact
x∗ ∈ D0. In identification problems the estimation of x∗ can be carried out in an off-line fashion,
but this is not the case in stochastic adaptive control. Thus we focus on recursive estimation of
x∗.

It is not difficult to see (cf. [19]) that under Conditions 3.7, 3.8 and 3.9 the piecewise constant
continuous-time extension of the random field H(n, x, ω) defined by (3.46) satisfies Conditions
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3.1, 3.2 and 3.3 with G defined under (3.48). In fact, in the latter condition δG(t, x) decays
exponentially fast to zero.

We use an iterative procedure, in which the estimate of x∗ at time n will be denoted by xn.
To update this estimate we should use the correction term Q(φn(xn)), but this frozen parameter
value can not be easily computed. In fact in stochastic adaptive control problems it can not be
computed at all. Hence we generate an on-line approximation of Q(φn(xn)) and thus we arrive
at the following first version of the DFL method: define recursively

φn+1 = A(xn)φn + B(xn)en (3.50)

xn+1 = xn +
1
n

Q(φn+1) (3.51)

with initial conditions x0 = ξ ∈ intD0 and φ0 a constant, non-random initial state. It is assumed
that Q(φn+1) is computable by coupling a physical system with our computer.

Discussion on the DFL scheme. The applicability of this general estimation scheme in the theory
of recursive identification of linear stochastic systems has been discussed in much details [53],
albeit its analysis has not been complete. Further examples of application are given in [3]. Here
also a rigorous and detailed analysis of a non-linear modification of the DFL scheme is given,
using a Markovian dynamics in generating the state sequence (φn). This setup extends the range
of applicability of the method, but the verification of the existence of the solution of a Poisson-
equation, (see Condition (A.4) of Chapter 1.1, Part II in [3]), seems to be hard. A special case
of the DFL scheme is stochastic linear regression, in which φn does not depend on x at all and
H(n, x, ω) is of the form

H(n, x, ω) = Q(l(φn, x)) (3.52)

with l being linear both in φ and x, has been analyzed in [7, 14, 47].
It is well-known from simulations that the DFL scheme may diverge, unless some precaution

is taken. The above procedure will therefore be modified so that the estimates xn will be enforced
to stay in a compact domain D0 ⊂ D, such that x∗ ∈ intD0. This will be achieved by a resetting
mechanism: if xn+1 leaves D0 we redefine it to be x0. To formalize this procedure let xn+1−
denote the value of x computed at time n + 1 by (3.51). Then if xn+1−ε| intD0 then we reset it
to its initial value ξ. To formalize the procedure let

Bn+1 = {ω : xn+1−ε| intD0}.

Then we define:

Algorithm DFL: The Djereveckii-Fradkov-Ljung or DFL scheme with resetting:

φn+1 = A(xn)φn + B(xn)en (3.53)

xn+1 = xn + (1− χ
Bn+1)

1
n + 1

Q(φn+1) + χBn+1(x0 − xn). (3.54)

An additional stopping time is used in [3] to ensure the validity of (3.43) by ensuring that the
sequence (A(xn)), or equivalently the sequence (xn) is slowly-varying. Following [3], (3.1.2) on
p. 291, for any positive integer σ define the stopping time

ν(σ) = min{n : n integer, n > σ, |xn − xn−1| > δ}, (3.55)

where σ is some fixed positive number. It is well-known that if δ is sufficiently small, then (3.43)
holds. However, the a priori determination of a right value of δ seems to be hard.

Discussion of the ”boundedness condition”. The eventual divergence of the DFL scheme is often
dealt with the controversial ”boundedness condition” first formulated in [51], requiring that the
estimator process visits a compact domain of attraction of the ODE infinitely often. A lucid
exposition of the underlying principle is given in [52] see Lemma 1.12, which is considered there
as the key tool for the ODE method. Almost sure convergence using the above ”boundedness
condition” has also been established for a non-linear, Markovian extension of the DFL method
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in [3], Part II, Chapter 1.9, Theorem 15. Unfortunately, the ”boundedness condition” is much
too restrictive: it is a condition on the process itself that we analyze and it is not clear at all if
it is satisfied even for basic methods such as RPE for ARMA-processes.

One way to enforce the boundedness of the estimation process is to consider a compact
truncation domain containing the true parameter in its interior and to ”project” the estimator
back to this domain if it would leave it, see [51, 45]. It is easy to see that this procedure may
fail even for deterministic algorithms, namely the ODE which approximates the evolution of the
discrete time algorithm may force us to move out of the truncation domain. A sophisticated
extension of the projection method using expand in g truncations has been developed by H.F.
Chen.

A rigorous treatment of the boundedness problem has been given in [3], where the estimator
process is stopped if it leaves a prescribed compact domain containing the true parameter in its
interior. Denoting by Ω′ ⊂ Ω the event that the estimator process is never stopped, the almost
sure convergence of the estimator process has been established on Ω′, see [3], Part II, Chapter
1.6, Proposition 11. But convergence with probability strictly smaller than 1 is not satisfactory
from the practical point of view. The above truncated version of the DFL-methods has been
given and analyzed in [19].

The definition of the truncation domain requires some a priori knowledge of the system
parameters no matter what truncation procedure we use. This may seem to be a restrictive
assumption but even deterministic iterative methods for optimization may fail without good
initialization.

In practice we start with an initial value and a truncation domain which may or may not
satisfy our conditions. If it does not and the solution trajectory of the associated ODE starting
at x0 = ξ does hit the boundary of D0, then a heuristic argument, following [19], shows that
the estimator process will be likely to hit the neighborhood of the same point of the boundary
of the truncation domain. This phenomenon can be detected during the computations and a
larger truncation domain can be chosen. Such an adaptive choice of the truncation domain has
not yet been studied. A special case when the boundedness problem does not arise is the use of
a stochastic regression approach, such as extended least squares (ELS), see [53].

To connect the DFL scheme with Algorithm DR define

δH(n, ω) = Q(φn)−Q(φn(xn)). (3.56)

Then (3.54) can be written in the form of (3.34). A critical point in the analysis of the DFL
scheme is that the perturbation term δH(n, ω) is not given a priori, rather it is defined via the
recursive procedure itself. In fact, the analysis of δH(n, ω) is a substantial component of the
convergence analysis of the DFL-method, which has been worked out in [19], Section 5 and 6,
leading to the following result (cf. Lemma 5.6 of [19]):

Lemma 3.2 Consider the DFL scheme defined by (3.53)-(3.54). Assume that Conditions 3.7,
3.8, 3.9 are satisfied. In addition assume that Condition 3.4 is satisfied with α > 1/2. Then
(δH(n, ω)) defined by (3.56) is an M -bounded process, moreover there exists an ε with 0 < ε <
1/2 such that for any fixed q > 1 and for any integer s ≥ 1 and integers σ

sup
s≤σ≤[qs]

τ(σ)∧[qσ]∑
σ

1
r
|δH(r, ω)|dr = OM (s−1/2−ε). (3.57)

In short: (δH(n, ω)) satisfies Condition 3.6. Postulating the validity of Condition 3.4 we conclude
that all conditions of Theorem 3.2 are satisfied and thus we get:

Theorem 3.3 Consider the DFL scheme defined by (3.53)-(3.54). Assume that Conditions 3.7,
3.8 and 3.9 are satisfied. In addition assume that Condition 3.4 is satisfied with α > 1/2. Then
we have xn = OM (n−1/2).

Discussion of the result. A special feature of the above result is that the moments of the
estimation error are bounded from above. The only alternative result on the moments of the
estimation error in the context of the DFL scheme seems to be Proposition 24 of [3], Part II,
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Chapter 1.10, where the L2 moments of the error of the stopped process is shown to be of the
order 1/n.

Almost sure convergence of the DFL scheme has been stated in [51] using the controversial
”boundedness condition”, requiring that the estimator process visits a compact domain of at-
traction of the ODE infinitely often. See also [52], Lemma 1.12 for a related result. Almost sure
convergence using the above ”boundedness condition” has also been established for a non-linear,
Markovian extension of the DFL method in [3], Part II, Chapter 1.8, Theorem 15. The almost
sure convergence of the estimator process has been established on a set Ω′ ⊂ Ω of probability
strictly less than 1, see [3], Part II, Chapter 1.6, Proposition 11 and Chapter 3.4, Theorem 17.

An alternative set of results are obtained for stochastic regression models developed in [47].
Results on the rate of almost sure convergence are given in [7] and [14]. See also Theorem 2 of
[4] or Theorem 1 of [10]. The main shortcoming of stochastic regression, such as extended least
squares (ELS), see [53], compared to the DFL scheme is that its range of applicability is limited.
E.g in estimating an ARMA process by ELS we must impose the condition that the polynomial
C − 1/2 is positive real.

Further discussion on mixing conditions. L-mixing and φ-mixing can both be used to derive
two main results of [19], (Theorems 1.1 and 1.2), restated here as Theorem 3.1 and Theorem 3.2.
In both results the key technical device is an improved Hölder-inequality, see Lemma 8.1 of the
Appendix, or Chapter 7.2 of [15], or Appendix III of [33]. An improved Hölder-inequality of [15]
is restated as Lemma 8.2. The situation is quite different for the DFL scheme, where L+-mixing
has been heavily exploited for deriving Theorem 3.3, in particular in proving Lemma 3.2 (see
Sections 5 and 6 of [19], in particular Theorem 6.1 in [19]).

4 Strong approximation of the estimation error

The main result of the present paper is a significant extension of Theorem 2.4 for the three,
closely related recursive estimation schemes presented in the previous section. These extensions
will be stated and proved in this section. The analysis will be carried out in detail for Algorithm
CR, given by (3.16) and the resetting mechanism (3.17) and (3.18), see Theorem 4.1. The proof is
non-trivial and relies on the results of [17, 19] and [21]. The corresponding results for Algorithm
DR and Algorithm DFL will then follow by relatively simple arguments. The extension of the
two other main results for the RPE method, given in Section 2 as Theorems 2.5 and 2.6, will be
given in the next two sections. Note that the conditions for the next theorem are identical with
the conditions of Theorem 3.1.

Theorem 4.1 Consider the continuous-time recursive estimation scheme Algorithm CR given
by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that Conditions 3.1-3.5 are
satisfied and Condition 3.4 is satisfied with α > 1/2. Then the solution of (3.16), (xt), is defined
for all t ∈ [1,∞) with probability 1 and we have with

εx = min(α, ε)−,

where c− is any number smaller than c, α is given by (3.31) and ε is given in Condition 3.5,

xt − x∗ =
∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
H(s, x∗, ω)ds + OM (t−1/2−εx). (4.1)

Discussion of the result. The bound OM (t−1/2−εx) can not be improved in general. Indeed,
let δH(t, ω) = 0, then εx = α− = α− − 1/2, where α = α∗− (see (3.31), (3.26) and (3.25)). Thus

−1/2− εx = −α∗−.

Consider now a linear process with additive, state-independent, bounded noise, i.e. let H(t, x, ω) =
A∗x + ut, where (ut) is a zero-mean L-mixing bounded process. Then Algorithm CR reads

ẋt =
1
t
(A∗xt + ut), x1 = ξ. (4.2)
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Assuming that A∗ is stable, the boundedness of (ut) implies the boundedness of (xt), hence
taking a sufficiently large truncation domain no resetting will take place ever. Obviously we
have x∗ = 0 and we can write the exact equality

xt =
(

∂

∂ξ
y(t, 1, x∗)

)
· ξ +

∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
H(s, x∗, ω)ds (4.3)

with
∂

∂ξ
y(t, s, x∗) = eA∗(log t−log s).

Thus the residual term, the first term on the right hand side of (4.3), is eA∗ log tξ, since now
s = 1. Thus we have

||eA∗ log t||sp = t−α∗ , (4.4)

and since for any square matrix B we have ||B|| ≥ ||B||sp, we conclude that

||eA∗ log t|| ≥ t−α∗ . (4.5)

Thus there exists a ξ such that
|eA∗ log tξ| ≥ t−α∗ |ξ|, (4.6)

implying that the result of the theorem is sharp.
To interpret this result note that the matrix ( ∂

∂ξ )y(t, s, x∗) is the sensitivity matrix, which
indicates the relative effect of a perturbation of the initial condition at time s on the solution of
(3.15) at time t. Thus the dominant term on the right hand side represents the cumulative effect
of the ideal correction terms 1

sH(s, x∗, ω) at time t. A similar representation of the error xt−x∗

for classical Robbins-Monroe processes, had been implicitly used already in [54]. The above
dominant term has been explicitly presented for a class of stopped stochastic approximation
processes in Lemma 3.1 of [65].

The novelty of the present result is that it is stated for a general recursive estimation scheme,
that can handle the widely-used DFL scheme, a crucial boundedness assumption enforced by
a resetting mechanism and a tight upper bound for the residual term has been obtained. A
relatively straightforward corollary of Theorem 4.1 is the following discrete-time result, in which
the conditions are identical with the conditions of Theorem 3.2:

Theorem 4.2 Consider the discrete-time recursive estimation process Algorithm DR with re-
setting defined by (3.34). Let (Hc(t, x, ω)) be the piecewise constant continuous-time extension
of (H(n, x, ω)) defined under (3.35). Assume that (Hc(t, x, ω)) satisfies Conditions 3.1-3.4 and
Condition 3.4 is satisfied with α > 1/2. Let δH(n, ω) satisfy Condition 3.6, with τ(σ) defined
in (3.36). Then we have, with εx = min(α, ε)−, where α is given by (3.31) and ε is given by
Condition 3.6,

xN − x∗ =
N∑

n=1

∂y

∂ξ
(N, n, x∗)

1
n

H(n, x∗, ω) + OM (N−1/2−εx).

Specializing the last result to the DFL scheme we get a result that is very useful for applications
(see Section 7):

Theorem 4.3 Consider the DFL scheme defined by (3.53)-(3.54). Assume that the state-space
equation (3.38) satisfies Condition 3.7, the noise process (en) satisfies Condition 3.8 and 3.9
and the associated ODE satisfies Condition 3.4 with α > 1/2. Let εx = min(α, ε)−, where α is
defined under (3.31) and ε is given by Lemma 3.2. Then we have

xN − x∗ =
N∑

n=1

∂y

∂ξ
(N, n, x∗)

1
n

Q(φn(x∗)) + OM (N−1/2−εx).
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Remark: The proof of Lemma 5.6 in [19], based on Theorem 6.1 of the same paper, implies that
in Condition 3.5 we have ε < 1/2. Thus in the present case it is not our choice to have ε < 1/2. It
follows that the upper bound for the residual term can not be as small as OM (N−1), in contrast
to what we had for the off-line prediction error method for ARMA-processes, see Theorem 2.2.

The above results take a particularly attractive form for partially stochastic Newton methods.
A recursive estimation method is called a partially stochastic Newton method if the Jacobian-
matrix of the right hand side of the associated ODE at x = x∗ is of the form

(−I 0
X Y

)
,

where I is an identity matrix. An example: the standard recursive prediction error estimation
of ARMA processes, in which both the system-parameter θ∗ and the Hessian of asymptotic cost-
function R∗ are estimated and the estimates of the system-parameters are updated using Newton-
like steps, is a partially stochastic Newton method with respect to the system-parameters.

The above decomposition of the Jacobian is in one-to-one correspondence with the splitting
of the parameter-vector x as x = (x1, x2). With this notation it is easy to see that

∂

∂ξ1
y(t, s, ξ)|ξ=x∗ =

(
s

t
I, 0

)

for s ≤ t and the statement of Theorem 4.3 simplifies to the following:

Theorem 4.4 Assume that the conditions of Theorem are satisfied and that we can split the
parameter-vector x as x = (x1, x2) so that the estimation method is a partially stochastic Newton
method with respect to x1. Let (Q1, Q2) be the corresponding splitting of Q. Then we have with
the same εx as in Theorem 4.3

x1
N − x1∗ =

1
N

N∑
n=1

Q1(φn(x∗)) + OM (N−1/2−εx).

Theorem 4.4 is an extension of Theorem 2.4 to general partially stochastic Newton methods, but
with a weaker error term, since εx < 1/2.

The result given as (2.23) can also be extended. Let the off-line estimator x̂N of x∗ be defined
as the solution of

UN (x) =
N∑

n=1

Q1(φn(x)) = 0

with respect to x. The handling of multiple solutions is precisely described in [18]. Then it is
easy to see that Theorem 2.2 can be extended andnoting that the Jacobian-matrix of the right
hand side of the associated ODE at x = x∗ is of the form given above, we get for the first
component of x̂

x̂1
N − x1∗ =

1
N

N∑
n=1

Q1(φn(x∗)) + OM (N−1).

Combining this with Theorem 4.4 and writing ̂̂xN = xN we get

̂̂x1

N − x̂1
N = OM (N−1/2−εx) (4.7)

which is an extension of (2.23), albeit with a weaker error term.

Discussion of the result. To compare these results with results of [3] and [45] we note that the
limit results of [3] are of classical nature: weak convergence and CLT (central limit theorem),
which are not strong enough for calculating performance degradation that we called pathwise
cumulative regret. The same remark applies to the weak-convergence results of [45].

In the case of stochastic regression methods, developed in [47] andextended in [7] and [14],
tight bounds for the almost sure rate of convergence of the estimator process are given. But
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even these results are not applicable in general to get exact asymptotic results for the pathwise
cumulative regret, except in very special cases, such as the minimum-variance self-tuning reg-
ulator for ARX-systems, see [49]. For ARMAX-systems these techniques yield only qualitative
results, see [48].

Further discussion on mixing conditions. The proof of Theorem 4.1 relies on a moment
inequality for weighted multiple integrals of L-mixing processes given in [21]. It is likely that
this result can be extended to φ-mixing processes, since it is based on the repeated use of an
improved Hölder-inequality, which does have its variant for φ-mixing processes, see Lemmas 8.1
and 8.2 of the Appendix andChapter 7.2 of [15] for further results. Thus it is likely that L-mixing
and φ-mixing can both be used to derive the results of the present section for Algorithm CR and
Algorithm DR, given as Theorems 4.1 and 4.2.

The situation is quite different for the DFL scheme, where L+-mixing has already been
heavily exploited for getting the rate of convergence of higher order moments, see Theorem 3.3.
Furthermore, L+-mixing is very much used in the context of all three algorithms (Algorithm
CR, Algorithm DR and the DFL scheme) in deriving the results of Sections 4 and 5. Moreover,
the formulation of the main result of Section 5 is given in terms of the concept of L-mixing. It is
not clear if a similar result holds in the context of φ-mixing. Even the following simple related
problem seems to be open: under what conditions is the response of an exponentially stable
linear filter, with a φp-mixing process as its input, φp-mixing ?

Proof of Theorem 4.1: Assume x∗ = 0. Also we can assume that δG = 0, namely the
term δG(t, xt) can be merged with δH(t, ω). Indeed, the condition that δG(t, x) = O(t−1/2−ε)
uniformly in x for x ∈ D0, see Condition 3.3, implies that Condition 3.5 remains valid when
δH(t, ω) is replaced by δH(t, ω) + δG(t, xt).

Let us consider the process (xt) on the interval [s, qs) with s ≥ 1, q > 1 and let yt denote
the solution of the ordinary differential equation (3.15) starting from xs at time s. Let Cs denote
the event that xt hits ∂D0 in [s, qs). Then we can write

xt − yt = (1− χCs)
∫ t

s

∂

∂ξ
y(t, r, xr) · 1

r

(
H(r, xr, ω) + δH(r, ω)

)
dr + χCs(xt − yt) (4.8)

with H(r, x, ω) = H(x, r, ω) − G(r, x) by using Lemma 8.6 of the Appendix. Let us now take
into account the fact that yξ(t, r, x) and H(r, x, ω) are continuously differentiable with respect
to x. Hence we can write

∂

∂ξ
y(t, r, xr) =

∂

∂ξ
y(t, r, 0) +

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr

and

H(r, xr, ω) = H(r, 0, ω) +
∫ 1

0

∂

∂x
H(r, λxr, ω)dλ · xr.

Substituting into (4.8) we get that the first integral on the right hand side of (4.8) can be written
as the sum of the following five terms:

I1 =
∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r
H(r, 0, ω)dr

I2 =
∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∫ 1

0

∂

∂x
H(r, λxr, ω)dλ · xrdr

I3 =
∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr · 1

r
H(r, 0, ω)dr

I4 =
∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr · 1

r

∫ 1

0

∂

∂x
H(r, λ′xr, ω)dλ′ · xrdr

I5 =
∫ t

s

∂

∂ξ
y(t, r, xr) · 1

r
δH(r, ω)dr.
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We will later also write I1 = I1,t = I1,t,s when we want to emphasize the dependence of I1 on t
and s. Then we can write

xt − yt = (1− χCs)(I1 + I2 + I3 + I4 + I5) + χCs(xt − yt). (4.9)

We will approximate I2 and I3 so that we replace λxr and λ′xr by 0 and define

I∗2 =
∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∫ 1

0

∂

∂x
H(r, 0, ω)dλ · xrdr

I∗3 =
∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, 0)dλ · xr · 1

r
H(t, 0, ω)dr.

For the sake of notational homogenity we will also write I1 = I∗1 .

Lemma 4.1 We have for fixed q and any s ≤ t ≤ qs,

xt − yt = I∗1 + I∗2 + I∗3 + OM (s−1/2−ε). (4.10)

Remark: It ill be clear from proof that in the case δH(t, ω) = 0 the last term becomes OM (s−1).
Indeed the error term OM (s−1/2−ε) shows up only in the last step of the proof, in the estimation of
the effect of I5. Thus a key factor in the accuracy of the ODE approximation is the perturbation
term δH(t, ω).

Proof: Estimation of I2. We claim that for s ≤ t ≤ qs we have

I2 = I∗2 + OM (s−1). (4.11)

Indeed, fix λ and integrate first with respect to r. We expand ∂
∂xH

i
(r, λxr, ω) (for i = 1, . . . , p)

into a Taylor-series about 0 once more to obtain:

∂

∂x
H

i
(r, λxr, ω) =

∂

∂x
H

i
(r, 0, ω) +

(∫ 1

0

∂2

∂x2
H

i
(r, λ′λxr, ω)dλ′

)
· xr.

The expression under the integral term here can be shown to be OM (1) by the same argument
that we used above, since H is assumed to have continuous third derivatives almost surely which
are also M -bounded. Thus we get ∂

∂xH(r, λxr, ω) = ∂
∂xH(r, 0, ω)+OM (r−1/2). Integration with

respect to λ from 0 to 1 and multiplication by r−1xr = OM (r−3/2) yields an error term OM (r−2).
Finally since ‖ ∂

∂ξ y(t, r, 0)‖ ≤ C0(r/t)α we get

I2 =
∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) · xrdr + OM (s−1) (4.12)

as stated. Note that the dominant term can be estimated by using the moment inequality given
as Theorem 8.1. Thus we also get I2 = OM (s−1/2).
Estimation of I3. We claim that for s ≤ t ≤ qs we have

I3 = I∗3 + OM (s−1). (4.13)

Indeed, in the inner integrand of I3 we can write

∂2

∂ξ2
y(t, r, λxr) =

∂2

∂ξ2
y(t, r, 0) +

(∫ 1

0

∂2

∂ξ3
y(t, r, λ′λxr)dλ′

)
· xr, (4.14)

where the last term is to be interpreted as the product of a 4-tensor with a 1-tensor yielding a
3-tensor, thus interpreting · as a tensor product. Substituting (4.14) into the expression of I3 we
get for fixed λ, λ′ the product of the following two terms:

∂2

∂ξ2
y(t, r, 0) · xr · 1

r
H(r, 0, ω) = OM (r−3/2)

∂3

∂ξ3
y(t, r, λ′λxr) · xr · xr · 1

r
H(r, 0, ω) = OM (r−2),
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where we used the fact that the partial derivatives of y(t, r, ξ) )with respect to ξ are bounded by a
deterministic constant, see Lemma 8.8 of the Appendix. Integrating from s to t the contribution
of the integral of the second term is OM (s−1), thus we get

I3 =
∫ t

s

(
∂2

∂ξ2
y(t, r, 0) · xr

)
· 1
r
H(r, 0, ω)dr + OM (s−1). (4.15)

as stated. Note that the expected upper bound I3 = OM (s−1/2) can not be readily derived from
the above approximation: we can not use the moment inequality given as Theorem 8.1 since the
weights xr are random!
Estimation of I4. We claim that for s ≤ t ≤ qs we have

I4 = OM (t−1). (4.16)

Indeed, by Theorem 3.1 we have xr = OM (r−1/2), hence for fixed λ, λ′ the contribution of the
term r−1xr · xr, interpreted as an appropriate tensor product, is OM (r−2). On the other hand
‖yξξ(t, r, x)‖ ≤ C ′0(r/t)α ≤ C ′1 with some C ′0, C

′
1 > 0, uniformly in x for x ∈ D0, cf. Lemma 8.8.

Thirdly

‖ ∂

∂x
H(r, λ′xr, ω)‖ ≤ sup

x∈D∗0

‖ ∂

∂x
H(r, x, ω)‖ ∆= H∗

x(x, r, ω), (4.17)

where D∗
0 denotes the star-like closure of D0. Since by assumption D∗

0 ⊂ intD and the partial
derivative Hxx(r, x, ω) exists and is continuous almost surely and is M -bounded, we get by the
maximal inequality given as Theorem 8.3 in the Appendix that the right hand side of (4.17) is
OM (1). Hence we finally get, using the triangle inequality, that

I4 = OM

(∫ t

s

C0(r/t)αr−2dr

)
= OM (s−1)

as stated.
Estimation of the effect of I5,t. We claim that for s ≤ t ≤ qs

(1− χCs) I5,t = OM (s−1/2−ε). (4.18)

Indeed, we have

(1− χCs) |I5,t| ≤ (1− χ
Cs)

∫ t∧τ(s)

s

|| ∂

∂ξ
y(t, r, 0)|| 1

r
|δH(r, ω)| dr

since for t > τ(s) we have 1 − χ
Cs = 0. Noting that ‖yξ(t, r, 0)‖ ≤ C0 and taking into account

Condition 3.5 we get the claim.
Write now

xt − yt = I1 + I2 + I3 + I4 + (1− χCs)I5 − χCs(I1 + I2 + I3 + I4) + χCs(xt − yt), (4.19)

and estimate the contribution of the last two terms. Note that

I1 + I2 + I3 + I4 =
∫ t

s

∂

∂ξ
y(t, r, xr) · 1

r
H(r, xr, ω) dr = OM (1). (4.20)

Indeed, ||yξ(t, r, xr)|| ≤ C0 and H(r, xr, ω) is M -bounded, see the argument leading to (4.17).
Similarly |xt− yt| = OM (1), actually we have |xt− yt| = O(1). As for χCs we have the following
lemma that has been given as Lemma 2.3 in [19].

Lemma 4.2 Consider the continuous-time recursive estimation scheme given by (3.16) with
the resetting mechanism (3.17) and (3.18). Assume that Conditions 3.1-3.5 are satisfied. Let
Cs denote the event that xt hits ∂D0 in the interval [s, qs). Then for any m ≥ 1 we have
P (Cs) = O(s−m).
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Thus the contribution of the last two terms in (4.19) is OM (s−m) for any m ≥ 1 and with this
Lemma 4.1 has been proved.

Our next step is to show that the dominant term is I∗1 , i.e. the terms I∗2 and I∗3 are negligible.
This is stated in the next lemma, which is the key lemma for the proof of Theorem 4.1. Its proof
requires a new tool, specially designed for the present application: moment inequalities for double
integrals of L-mixing processes.

Lemma 4.3 We have for s ≤ t ≤ qs

xt − yt = I∗1 + OM (s−1/2−ε).

Proof: In order to obtain sharper estimates of I∗2 and I∗3 let us write

I∗2 + I∗3 =
∫ t

s

grxr dr, (4.21)

where the matrix-valued process (gr) is defined by

gr =
∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) +

∂2

∂ξ2
y(t, r, 0) · 1

r
H(r, 0, ω). (4.22)

Thus we can write Lemma 4.1 as

xt = yt + I∗1 +
∫ t

s

grxrdr + OM (s−1/2−ε). (4.23)

If we had xr = x a small constant, then we could write the integral on the right hand side of
(4.23) as

∫ t

s
grdr · x, which then could be estimated by the moment inequality give as Theorem

8.1, since both Hx(r, 0, ω) and H(r, 0, ω) are zero-mean L-mixing processes. If x is small then
the contribution of this term will be negligable. To show that the second term in (4.23) is indeed
negligible we iterate (4.23), i.e. substitute xr by the expression that is given by (4.23). Writing
I∗1 = I∗1,t we get

xt = yt + I∗1,t +
∫ t

s

gr

(
yr + I∗1,r +

∫ r

s

gpxpdp + OM (s−1/2−ε)
)

dr + OM (s−1/2−ε). (4.24)

Let us set

J1 =
∫ t

s

gryrdr, J2 =
∫ t

s

grI
∗
1,rdr, J3 =

∫ t

s

gr

∫ r

s

gpxp dp dr.

The last term of the double integral in (4.24) yields
∫ t

s
grOM (s−1/2−ε)dr = OM (s−1/2−ε) since∫ t

s
grdr = OM (1), therefore the effect of this term can be merged into the final residual term of

(4.24). Thus we get
xt − yt = I∗1,t + J1 + J2 + J3 + OM (s−1/2−ε). (4.25)

We show that J1 + J2 + J3 = OM (s−1).
Estimation of J1. To estimate J1 write it as

J1 =
∫ t

s

gry(r, s, xs)dr = L1(xs), with L1(x) =
∫ t

s

gry(r, s, x)dr.

Note that L1(0) = 0. To estimate L1(xs) consider a Taylor-series expansion of L1(x) around 0:

L1(xs) =
∫ 1

0

L1x(λxs)dλ · xs (4.26)

where L1x = (∂/∂x)L1(x). It is easy to see that in computing L1x differentiation and integration
can be interchanged, thus we can write
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L1x(x) =
∫ t

s

(
∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) +

∂2

∂ξ2
y(t, r, 0) · 1

r
H(r, 0, ω)

)
· ∂

∂x
y(r, s, x) dr. (4.27)

Since yξ(t, r, 0), yξξ(t, r, 0) and yx(r, s, x) are deterministic and bounded and Hx(r, 0, ω) and
H(r, 0, ω) are zero-mean L-mixing processes we get by the moment inequality given as Theorem
8.1 that for each fixed x ∈ D0

L1x(x) = OM

(∫ t

s

1
r2

dr

)1/2

= OM (s−1/2).

Using similar arguments and taking into account that G is three-times continuously differentiable,
we obtain that L1xx(x) = (∂2/∂x2)L1(x) = OM (s−1/2). Using now the maximal inequality given
as Theorem 8.3 of the Appendix we get

‖L1x(λxs)‖ ≤ sup
x∈D∗

0

‖L1x(x)‖ = OM (s−1/2).

Taking into account that xs = OM (s−1/2) we finally get

J1 = L1(xs) = OM (s−1). (4.28)

Estimation of J2. To estimate J2 let us use the definition of I∗1,t and write

J2 =
∫ t

s

gr

∫ r

s

f1,vH(v, 0, ω)dv,

where the modulating function f1,v is

f1,v =
∂

∂ξ
y(r, v, 0) · 1

v
.

Write gr as

gr = f2,1,r
∂

∂x
H(r, 0, ω) + f2,2,rH(r, 0, ω),

where the modulating functions are

f2,1,r =
∂

∂ξ
y(t, r, 0) · 1

r
and f2,2,r =

1
r

∂2

∂ξ2
y(t, r, 0) · 1

r
.

Noting that yξ(t, r, 0) and yξξ(t, r, 0) are bounded and applying the moment inequality for double
integrals of L-mixing processes, given as Theorem 8.2 in the Appendix, we get

J2 = OM (s−1). (4.29)

Estimation of J3. For J3 we get after interchanging the order of integration:

J3 =
∫ t

s

gpxp(
∫ t

p

grdr) dp.

For the inner integral we have ∫ t

p

grdr = OM (p−1/2)

by the moment inequality given as Theorem 8.1. Since gp = OM (p−1) we have gpxp = OM (p−3/2)
and thus the integrand of the outer integral is of the order of magnitude OM (p−2). It follows
that

J3 = OM (s−1). (4.30)
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Thus we conclude that indeed J1 + J2 + J3 = OM (s−1) and substituting this into (4.25) the
proof of Lemma 4.3 is complete.

Pasting together. Let us now take a subdivision of the half-line [1,∞) by the points qi with q > 1
and let us consider an interval qn ≤ t < qn+1. Let us define for i ≥ 1

δi = I∗1,qi,qi−1 =
∫ qi

qi−1

∂

∂ξ
y(qi, r, 0)

1
r
H(r, 0, ω)dr.

Note that δi = OM (q−i/2).

Lemma 4.4 We have for qn ≤ t < qn+1

xt − yt =
n∑

i=1

∂

∂ξ
y(t, qi, 0)δi + I∗1,t,qn + OM (q−n(1/2+εx)). (4.31)

Proof: Using Lemma 8.7 of the Appendix with si = qi, i = 0, 1, ..., n, sn+1 = t we get

xt − yt =
n∑

i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(λ)) dλ ·

(
xqi − y(qi, qi−1, xqi−1)

)
+

(
xt − y(t, qn, xqn)

)
, (4.32)

where w(i, λ) = (1 − λ)y(qi, qi−1, xqi−1) + λxqi . Taking into account Lemma 4.3 write the
i-th local tracking error xqi − y(qi, qi−1, xqi−1) in the form I∗1,qi,qi−1 + OM (q−(i−1)(1/2+ε)) =
δi + OM (q−(i−1)(1/2+ε)) to get

xt−yt =
n∑

i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(λ))dλ·

(
δi+OM (q−(i−1)(1/2+ε))

)
+I∗1,t,qn +OM (q−n(1/2+ε)). (4.33)

To estimate the cumulative effect of the error terms OM (q−(i−1)(1/2+ε)) note that we have
‖yξ(t, qi, w(i, λ))‖ ≤ C0(qi/t)α ≤ C0(qi/qn)α = C0q

−α(n−i), thus we get an upper bound

n∑

i=1

∫ 1

0

C0q
−α(n−i) ·OM (q−(i−1)(1/2+ε)) + OM (q−n(1/2+ε)). (4.34)

This expression can be estimated from above by using the remark after Lemma 8.5 of the
Appendix, given as (8.6), applied for the sequences (q−αi) and (q−(1/2+ε)i), the convolution of
which is bounded from above by C max(q−αn, q−(1/2+ε)n) assuming that α 6= 1/2 + ε. Since
max(−α,−(1/2 + ε)) = −min(α, 1/2 + ε) = −(1/2 + min(α, ε)) we get

xt − yt =
n∑

i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(i, λ))dλ · δi + I∗1,t,qn + OM (q−n(1/2+εx)). (4.35)

To further simplify the right hand side of (4.33) we replace w(i, λ) by 0. Note that by Lemma
8.8 of the Appendix

‖ ∂

∂ξ
y(t, qi, w(i, λ))− ∂

∂ξ
y(t, qi, 0)‖ ≤ C ′0(q

i/t)α|w(i, λ)|,

and hence cumulative error of this approximation is majorized by C ′0
∑n

i=1(q
i/t)α · |w(i, λ)| · δi.

Note that w(i, λ) = OM (q−i/2), uniformly in λ since xqi = OM (q−i/2) by Theorem 3.1 and
|yqi | = |y(qi, qi−1, xqi−1)| ≤ C0|xqi−1 |, therefore w(i, λ) · δi = OM (q−i) uniformly in λ. Thus the
the cumulative error of the last approximation is bounded from above by

C ′0

n∑

i=1

(qi/t)α ·OM (q−i) ≤
n∑

i=1

q−α(n−i) ·OM (q−i) = OM (q−nα′)
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with α′ = min(α, 1)−, by the remark after Lemma 8.5, given as (8.6). Since 1/2+ ε < 1 we have
α′ ≥ min(α, 1/2 + ε)− = εx and with this the proof of the lemma is complete.

Now the i-th term on right hand side of (4.31) can be written as

∂

∂ξ
y(t, qi, 0)

∫ qi

qi−1

∂

∂ξ
y(qi, r, 0)

1
r
H(r, 0, ω)dr =

∫ qi

qi−1

∂

∂ξ
y(t, r, 0)

1
r
H(r, 0, ω)dr, (4.36)

thus the cumulative contribution of the dominant terms in (4.31) is exactly what is the dominant
term in Theorem 4.1. Since yt = O(t−α) = O(t−(1/2+α)) the term can be merged into the residual
term OM (q−n(1/2+εx)) and thus the proof of Theorem 4.1 has been completed.

Proof of Theorem 4.2: Let (Hc(t, x, ω)) be the piecewise constant extension of (H(n, x, ω))
defined under (3.35) and define a piecewise linear extension of (xn) by

xl
t = (t− n)xn + (n + 1− t)xn−1 for 1 ≤ n ≤ t ≤ n + 1 if xn− ∈ intD0. (4.37)

On the other hand if xn−ε| intD0 then we reset xl to its initial value ξ at time t = n and put a
hold on the recursion until t = n + 1, i.e. we set

xl
t = ξ for 1 ≤ n < t ≤ n + 1 if xn−ε| intD0. (4.38)

Note the shift in time: xl
1 = x0.

Now it is easy to see that in intervals n ≤ t ≤ n + 1 where no resetting takes place (xl
t)

satisfies a differential equation of the form

ẋl
t =

1
t
(Hc(t, x, ω) + δH(t, ω)), (4.39)

where δH(t, ω) = δHc(n, ω) + OM (t−1), cf. [19], (2.13). The conditions of Theorem 4.1 can be
easily verified for the above procedure, except that we use the alternative resetting mechanism
given by (3.17) and (3.19). Thus we get by Theorem 4.1

xl
t − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
Hc(s, x∗, ω)ds + OM (t−1/2−εx). (4.40)

Let t = N be an integer and let n ≤ s < n + 1, with n being integer. We have

|| ∂

∂ξ
y(t, s, x∗)− ∂

∂ξ
y(t, n, x∗)|| ≤ C ′0(

s

t
)α 1

t
. (4.41)

Indeed, by Lemma 8.8

||yrξ(t, r, x∗)|| ≤ C ′0(r/t)α · ||1
t
Gξ(x∗)||.

Integrating yrξ(t, r, ξ) between n and s we get (4.41). Now replacing yξ(t, s, x∗) by yξ(t, n, x∗) in
(4.40), noting that 1

s − 1
n = O( 1

s2 ) and taking into account that H
c
(t, x∗, ω) is M -bounded we

get that the cumulative error is of the order of magnitude

OM

(∫ t

1

(
s

t
)α · 1

s2
ds

)
= OM (t−1), (4.42)

which can be merged into the residual term OM (t−1/2−εx) and thus the proof of Theorem 4.2 is
complete.

Proof of Theorem 4.3: Defining H and δH as in (3.46) and (3.56) the conditions of Theorem
4.1 have been verified in Section 5 of [19]. In particular, the critical Condition 3.5 is verified in
Lemma 5.6 in [19], (restated as Lemma 3.2 in the present paper), thus the claim follows.
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5 The transformed error process is L-mixing

In this section we derive a useful corollary of Theorem 4.1, stating that an appropriate transfor-
mation of the error process xt − x∗ is L-mixing. Define the transformed process

x̃r = er/2(xer − x∗). (5.1)

The weak limit of the shifted process (x̃r+ρ), when ρ → ∞ is established in [5] and Theorem
13, Chapter 4.5, Part II of [3], under conditions, which are different from the conditions of the
present paper. It is proven that (x̃r+ρ) converges weakly to the solution of the linear stochastic
differential equation

dz̃r = (A∗ + I/2)z̃r + dw̃r, (5.2)

with zero initial condition, in short
(x̃r+ρ)→(z̃r) (5.3)

in weak sense, where, cf. (3.24),

A∗ =
∂G(x)

∂x

∣∣
x=x∗

assuming that (A∗ + I/2) is stable. Here dw̃r is the stochastic differential of a Wiener-process,
with some covariance matrix P ∗dt. The weak limit (z̃r) is an L-mixing process with respect
to the pair of σ-algebras (F̃r, F̃+

r ) generated by the past and future increments of the Wiener-
process (w̃r), respectively. Hence it is indicated, but not implied by (5.3) that the transformed
process (x̃r) itself is also L-mixing with respect to some pair of σ-algebras (F̃r, F̃+

r ). We prove
that this is indeed the case.

The emphasis is on the non-asymptotic nature of our result. An analogous result for off-line
prediction error estimators of ARMA-parameters has been proved in [24]. It extends to RPE
estimators due to the strong approximation result given in result [22]. It has also been shown
in [24] that this result is instrumental in deriving a pathwise characterization of performance
degradation of an on-line adaptive predictor. Like in Section 4, we assume that δG(t, y) = 0,
which implies EH(s, x∗, ω) = 0 exactly for all s.

Theorem 5.1 Consider the continuous-time recursive estimation scheme given by (3.16) with
the resetting mechanism (3.17) and (3.18). Assume that the conditions of Theorem 4.1 are
satisfied. Then the transformed process (x̃r) is L-mixing with respect to (Fer ,F+

er ).

Proof: Approximation, dynamic representation and discretization of the process (x̃r). By The-
orem 4.1 the dominant term in the error process is

∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
H(s, x∗, ω)ds,

and the error term is OM (t−1/2+εx). We transform the dominant term and the residual term
OM (t−1/2+εx) in the same way as the error process itself (cf. (5.1)): we multiply by t1/2 and
introduce the new variables t = er and s = ep.

Now, since ∂
∂ξ y(t, s, x∗) is the solution of the variational equation

∂

∂t

∂

∂ξ
y(t, s, x∗) =

1
t
A∗

∂

∂ξ
y(t, s, x∗)

with initial condition ∂
∂ξ y(s, s, x∗) = I, we get, using an exponential change of time-scale followed

by an inverse change of time-scale, that

∂

∂ξ
y(t, s, x∗) = eA∗ log(t/s).

Thus the dominant term in the error process gets transformed into

x̃1,r = er/2

∫ r

0

eA∗(r−p)H(ep, x∗, ω)dp. (5.4)
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Now Theorem 4.1 implies that the following:

Claim. We have
x̃r − x̃1,r = OM (e−εxr). (5.5)

A dynamic representation of x̃1,r is obtained by differentiating (5.4) with respect to r. Then
we get that x̃1,r satisfies the differential equation:

d

dr
x̃1,r = (A∗ + I/2)x̃1,r + er/2H(er, x∗, ω), r ≥ 0. (5.6)

The dynamics satisfied by (x̃1,r) is similar to the dynamics satisfied by (zr), given by (5.2), but
the process er/2H(er, x∗, ω) is not a good approximation to the increments of a Wiener-process,
it is not even M -bounded. This difficulty can be avoided using discretization and averaging.
Take a small, fixed positive number h and consider the discrete-time sampled process x̃1,nh. It
satisfies the discrete-time dynamics

x̃1,(n+1)h = e(A∗+I/2)hx̃1,nh +
∫ (n+1)h

nh

e(A∗+I/2)((n+1)h−p)ep/2H(ep, x∗, ω)dp.

Note, that the input process is obtained as a weighted average of the input process of (5.6) over
the interval [nh, (n + 1)h]. Denote the second term on the right hand side, which is the input
process for the discretized system, by (ũ1,n), i.e. set

ũ1,n+1 =
∫ (n+1)h

nh

e(A∗+I/2)((n+1)h−p)ep/2H(ep, x∗, ω)dp. (5.7)

The discrete-time dynamics:

x̃1,(n+1)h = e(A∗+I/2)hx̃1,nh + ũ1,n+1, n ≥ 0, (5.8)

with zero initial condition. In what follows we develop a series of approximations of the process
ũ1,n+1.

An averaging effect for the process (ũ1,n). Going back to the original time-scale in (5.7) we can
write ũ1,n+1 as

ũ1,n+1 =
∫ e(n+1)h

enh

(
s

e(n+1)h

)(−A∗−I/2) 1
s1/2

H(s, x∗, ω)ds. (5.9)

Claim U1. For the order of magnitude of (ũ1,n+1) we have

ũ1,n+1 = OM (h1/2). (5.10)

Indeed, using the moment inequality given as Theorem 8.1 we get that for any q ≥ 1

E1/q|ũ1,n+1|q ≤ Cq

(∫ e(n+1)h

e(nh

||
(

s

e(n+1)h

)(−A∗−I/2) 1
s1/2

||2ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Note that for enh ≤ s ≤ e(n+1)h, 0 < h ≤ h0 with some 0 < h0 fixed.

||
(

s

e(n+1)h

)(−A∗−I/2)

|| = ||e(p−(n+1)h)(−A∗−I/2)|| ≤ C, (5.11)

where C is independent of n and h, since the set of matrices e(p−(n+1)h)(−A∗−I/2) with p varying
between nh and (n + 1)h is compact. Thus we get

E1/q|ũ1,n+1|q ≤ Cq

(∫ e(n+1)h

e(nh

C2 1
s
ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)),
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and the right hand side is O(h1/2) indeed, as stated.

Truncated averaging: the process (ũ2,n) and choosing δn and εδ. To eliminate the dependence
in the process (ũ1,n) we follow standard procedures, as described e.g. in [42]. First we remove a
small portion of the integral by decreasing the upper limit of the integration to e(n+1)h−δn+1 with
some positive δn+1. Since the original range of the integration has length e(n+1)h−enh = O(henh)
a reasonable choice for δn+1 is

δn+1 = heεδnh. (5.12)

with 0 < εδ < 1. Thus we define

ũ2,n+1 =
∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2) 1
s1/2

H(s, x∗, ω)ds. (5.13)

Claim U2. We have for h > 0

ũ1,n+1 − ũ2,n+1 = OM (h1/2e−(1−εδ)nh/2) and ũ1,n+1 − ũ2,n+1 = OM (h1/2). (5.14)

For the proof first note that
e(n+1)h − δn+1 ≥ enh. (5.15)

Indeed, this is equivalent to δn+1 ≤ e(n+1)h − enh = enh(eh − 1) and since δn+1 < henh and
h < (eh − 1), the validity of (5.15) follows.

The error of the approximation is

ũ1,n+1 − ũ2,n+1 =
∫ e(n+1)h

e(n+1)h−δn+1

(
s

e(n+1)h

)(−A∗−I/2) 1
s1/2

H(s, x∗, ω)ds,

which can be estimated by the moment inequality given as Theorem 8.1. Thus we get that
E1/q|ũ1,n+1 − ũ2,n+1|q is bounded from above by

Cq

(∫ e(n+1)h

e(n+1)h−δn+1

||
(

s

e(n+1)h

)(−A∗−I/2) 1
s1/2

||2ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Taking into account the kernel estimate given above as (5.11) we get that

E1/q|ũ1,n+1 − ũ2,n+1|q ≤ Cq

(∫ e(n+1)h

e(n+1)h−δn+1

C2

s
ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)). (5.16)

For the integral term we have

(∫ e(n+1)h

e(n+1)h−δn+1

1
s
ds

)1/2

= (log e(n+1)h − log(e(n+1)h − δn+1))1/2,

which is majorized by (
δn+1/(e(n+1)h − δn+1)

)1/2

.

Since e(n+1)h − δn+1 ≥ enh, we can continue the above inequality to get

(∫ e(n+1)h

e(n+1)h−δn+1

1
s
ds

)1/2

≤
(

δn+1/enh

)1/2

.

Taking into account the definition of δn+1 we get

(
δn+1/enh

)1/2

=
(

heεδnh/enh

)1/2

= h1/2e(εδ−1)nh/2.
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Combining the latter inequalities with (5.16) we get the first part of Claim U2, given as (5.14),
while the second part is a trivial consequence.

The independent sequence (ũ3,n). This is a key step in our arguments. We complete the construc-
tion of an approximating process of (ũ1,n) by projecting ũ2,n+1 on the relative future F+

enh−δn
.

In fact, assuming that the conditional expectation operator and integration can be interchanged,
we define

ũ3,n+1 =
∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2) 1
s1/2

E(H(s, x∗, ω)|F+
enh−δn

)ds. (5.17)

It is obvious that (ũ3,n) constitutes an independent sequence of random variables adapted to
Fenh .

Remark: We will now approximate the process ũ2,n+1 and get two dual error bounds. The first
error bound ensures that the error is exponentially decaying, but there is multiplicative factor
h−c with c > 0, while the second bound ensures that the approximating process itself is of the
order OM (h1/2).

Claim U3. We have with c > 0 that shows up in Condition 3.1 (see the definition of L+-mixing),
the following two estimates:

ũ2,n+1 − ũ3,n+1 = OM (h−ce−(1/2+cεδ)nh) and ũ2,n+1 − ũ3,n+1 = OM (h1/2). (5.18)

First we show that (ũ3,n+1) is an M -bounded sequence. Indeed, write ũ3,n+1 as

ũ3,n+1 = E
(∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2) 1
s1/2

H(s, x∗, ω)ds

∣∣∣∣ F+
enh−δn

)

and estimate the Lq-norm of the right hand side using Jensen’s inequality. Taking into account
(5.10), modified so that upper limit of the integration is reduced to the non-random upper limit
e(n+1)h − δn+1, we get the claimed M -boundedness of (ũ3,n+1) and in fact we get

ũ3,n+1 = OM (h1/2), (5.19)

and thus the second part of the Claim U3 is proved.
To bound the approximation error more accurately define for enh ≤ s ≤ e(n+1)h − δn+1

vs = |
(

s

e(n+1)h

)(−A∗−I/2) 1
s1/2

(
H(s, x∗, ω)− E(H(s, x∗, ω)|F+

enh−δn
)
)
|.

Then obviously

|ũ2,n+1 − ũ3,n+1| ≤
∫ e(n+1)h−δn+1

enh

vsds.

and by the triangle inequality for the Lq-norm for q ≥ 1

E1/q|ũ2,n+1 − ũ3,n+1|q ≤
∫ e(n+1)h−δn+1

enh

E1/qvq
sds. (5.20)

To estimate vs note that ||(s/e(n+1)h)(−A∗−I/2)|| ≤ C with some C for all s, n and h with
0 < h ≤ h0 and s−1/2 ≤ e−nh/2. On the other hand we have for any q ≥ 1

E1/q|(H(s, x∗, ω)− E(H(s, x∗, ω)|F+
enh−δn

))|q ≤ γq(s− (enh − δn),H(x∗)),

and thus
E1/qvq

s ≤ Ce−nh/2γq(s− (enh − δn), H(x∗)).
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It follows that

E1/q|ũ3,n+1 − ũ2,n+1|q ≤ Ce−nh/2

∫ e(n+1)h−δn+1

enh

γq(s− (enh − δn),H(x∗))ds. (5.21)

By Condition 3.1 γq(s− (enh − δn),H(x∗)) ≤ C(1 + δn)−1−c. Furthermore note that the range
of τ(s) = s− (enh − δn) is included in the semi-infinite interval [δn,∞), thus

∫ e(n+1)h−δn+1

enh

γq(s− (enh − δn), H(x∗))ds ≤
∫ ∞

δn

γq(τ, H(x∗))dτ ≤ C ′(1 + δn)−c < C ′δ−c
n .

Combining this with (5.21) and taking into account the definitions of the lag δn given by (5.12)
we get for any 1 ≤ q < ∞

E1/q|ũ2,n+1 − ũ3,n+1|q ≤ Cqe
−nh/2h−ce−cεδnh

with some Cq, which is independent of n and h and this is equivalent to the first part of Claim
U3, given as (5.18).

The final approximating process (x̃3,nh). We are going to define a final approximation to x̃nh

that plays a key role in subsequent analysis. This is obtained from the discrete-time dynamics
(5.8) so that ũ1,n+1 is replaced by ũ3,n+1. Thus we define the process (x̃3,(n+1)h) by

x̃3,(n+1)h = e(A∗+I/2)hx̃3,nh + ũ3,n+1, n ≥ 0, (5.22)

with zero initial condition. Let

F̃r = Fer and F̃+
r = F+

er .

We claim that the approximating process (x̃3,nh) is L-mixing with respect to (F̃nh, F̃+
nh).

Indeed, since the real parts of the eigenvalues of A∗ are less than or equal to α∗ and α < α∗

the spectral norm of e(A∗+I/2)h is less than e−αh and hence there exists a C > 0 such that for
any positive integer m

||e(A∗+I/2)mh|| ≤ Ce−αmh. (5.23)

The input process, (ũ3,n) is an M -bounded, independent, F̃nh-adapted sequence, hence it is
L-mixing with respect to (F̃nh, F̃+

nh). Thus the output-process (x̃3,nh) is L-mixing with respect
to (F̃nh, F̃+

nh), by Lemma 8.4, as stated.
To get an accurate bound for the estimation error x̃nh − x̃3,nh let us introduce the notations

εx2 = min(α, (1− εδ)/2) (5.24)
εx3 = min(α, 1/2 + cεδ). (5.25)

Obviously εx2, εx3 > 0. To formulate the next result note that if (ξt) and (ηt) are stochastic
processes such that ξt = OM (ct) and ηt = OM (dt), where ct, dt > 0, then, trivially,

ξt + ηt = OM (ct + dt). (5.26)

Lemma 5.1 The final approximation error x̃(n+1)h − x̃3,(n+1)h is given by

x̃(n+1)h − x̃3,(n+1)h = OM (e−εxnh + h1/2e−εx2nh + h−ce−εx3nh) = OM (1). (5.27)

Proof: The proof is almost trivial. It is easy to see, using the moment inequality given as
Theorem 8.1 that both (x̃nh) and (x̃3,nh) are M -bounded, which implies the second part of the
claim. To prove the first part, first note that the first term on the right hand side comes from
(5.5). Next note that the error process (x̃1,(n+1)h − x̃3,(n+1)h) satisfies

(x̃1,(n+1)h − x̃3,(n+1)h) = e(A∗+I/2)h(x̃1,nh − x̃3,nh) + (ũ1,n+1 − ũ3,n+1), n ≥ 0
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with zero initial conditions. For the input process (ũ1,n+1− ũ3,n+1) the combination of the upper
bounds given in Claim U2 and 3 or equivalently in (5.14) and (5.18) is used. Applying Lemma
8.5 we get the second and third terms on the right hand side of (5.27), which is thus proved.

To complete the proof of Theorem 5.1 we first note that defining

rn = x̃3,nh − x̃nh,

this residual process is L-mixing with respect to (F̃nh, F̃+
nh). Indeed, (rn) is M -bounded and

F̃nh-measurable. On the other hand, writing (5.27) in the form rn = OM (e−ε′xnh) we get for any
integer τ ≥ 0

γq(τ, r) = sup
n≥τ

E1/q|rn − E [rn|F+
n−τ ] |q ≤ 2 sup

n≥τ
E1/q|rn|q ≤ 2Cqe

−ε′xτh, (5.28)

with some finite Cq. The right hand side is obviously summable over τ and thus we get the
claim.

Since the class of L-mixing processes is closed under addition, it follows that x̃nh is also
L-mixing with respect to (F̃nh, F̃+

nh). The second remark we need is that the processes (x̃nh+d)
and (x̃3,nh+d), with 0 ≤ d < h fixed can be analyzed similarly and it is easy to see that all the
relevant estimates are valid uniformly in d. Thus we conclude, that the processes (x̃nh+d) are
L-mixing with respect to (F̃nh+d, F̃+

nh+d), uniformly in d for 0 ≤ d < h. Applying Corollary 3.5
of [24], restated as Lemma 8.3 in the Appendix, implies that the continuous-time process (x̃r)
itself is L-mixing with respect to (F̃r, F̃+

r ) = (Fer ,F+
er ) and the proof is complete.

6 The asymptotic covariance matrix

The asymptotic covariance matrix for Algorithm DFL, (3.53)-(3.54), has been rigorously derived
in Theorem 13, Chapter 4.5, Part II of [3] in a series model, where the initial time tends to
infinity, and thus the probability of exiting the truncation domain tends to 0. The asymptotic
covariance-matrix of Robbins-Monroe type recursive estimators has been known for long time, cf.
e.g. [54]. Here the correction term H(n, x, ω) is assumed to form an independent sequence, see
Condition A.3 in Chapter 2.3 of [54]. The asymptotic covariance-matrix for the RPE estimator
of ARMA-processes has been first given in [60] using the eventually false a priori assumption
that the non-truncated estimator sequence converges almost surely. It is likely that the analysis
of the cited paper carries over to truncated estimators.

The purpose of this section is to derive the asymptotic covariance matrix for the general
continuous-time recursive estimator process Algorithm CR given in (3.16) equipped with a re-
setting mechanism defined under (3.17) and (3.18). The study of the discrete time procedure
Algorithm DR given in (3.34) and Algorithm DFL, given under (3.53)-(3.54), with resetting
mechanisms defined in Section 3, can be reduced to the study of Algorithm CR, as pointed out
in Section 3 and 4. The main advance of this section relative to the cited result of [3] is that the
asymptotic covariance matrix for the DFL scheme with enforced boundedness is obtained for a
single process.

We also get a rate of convergence for the covariance-matrix sequence, which is useful in
applications such as the analysis of performance degradation to statistical parametric uncertainty.
For the present section we need the following additional condition:

Condition 6.1 We assume that (H(s, x∗, ω)) is asymptotically wide-sense stationary in the
following sense: there exists a zero-mean, wide-sense stationary process (H0(s, x∗, ω)) such that

ηs = H(s, x∗, ω)−H0(s, x∗, ω) = OM (s−1−εH ) (6.1)

with some εH > 0.

This condition is easily verified in system-identification. In fact, if we consider the general
estimation scheme of Section 3 defined by (3.53)-(3.54), then it is easy to see that we have
ηs = OM (e−βs) with some β > 0. Now we have the following modification of Theorem 4.1:
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Theorem 6.1 Consider the continuous-time recursive estimation scheme given by (3.16) with
the resetting mechanism (3.17) and (3.18). Assume that the conditions of Theorem 4.1 are
satisfied and in addition Condition 6.1 is also satisfied. Recall that εx = min(α, ε)−, where α is
defined under (3.31) and ε is given in Condition 3.5. Then we have

xt − x∗ =
∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
H0(s, x∗, ω)ds + OM (t−1/2−εx), (6.2)

and the wide-sense stationary process (H0(s, x∗, ω)) is L+-mixing.

Proof: Consider the expression for the error xt − x∗ that has been given in Theorem 4.1, or in
(4.1). The difference between (4.1) and (6.2) is in the dominant terms and this difference can be
majorized by ∫ t

1

| ∂

∂ξ
y(t, s, x∗)

1
s
ηs|ds ≤

∫ t

1

C0(s/t)α|1
s
ηs|ds,

due to Condition 3.4. Taking the Lq-norm of both sides with some q ≥ 1 and applying the
triangle inequality for Lq-norms we get an upper bound of the form

Cq

∫ t

1

C0(s/t)α 1
s
s−1−εH ds,

which is majorized by C ′qt
−1−εH . Thus the difference between the dominant terms is certainly

OM (t−1/2−εx) and thus (6.2) follows.
To prove that (H0(s, x∗, ω)) is L+-mixing note that repeating the argument leading to (5.28)

gives that for any integer τ ≥ 0
γq(τ, η) ≤ 2Cqτ

−1−εH ,

and hence (ηs) is L+-mixing. Since the class of L+-mixing processes is closed under addition, it
follows that (H0(s, x∗, ω)) is also L+-mixing and the proof is complete.

Remark. There is no loss of generality to assume that

γq(τ, H0) ≤ Cq(1 + τ)−1−cq

for all τ ≥ 0 with the same Cq, cq as in Condition 3.1 requiring that H and ∆H/∆x be L+

mixing.

To formulate the basic result of this section we need some notations. Denoting the autoco-
variance matrix of H0(s, x∗, ω) by ρ(τ), i.e. setting

ρ(τ) = E [H0(s + τ, x∗, ω)HT
0 (s, x∗, ω)] = E [H0(τ, x∗, ω)HT

0 (0, x∗, ω)],

we define a basic quantity:

P ∗ =
∫ ∞

−∞
ρ(τ)dτ. (6.3)

Since the process (H0(s, x∗, ω)) is L-mixing, the integral above converges. Indeed, since H0 =
(H0(s, x∗, ω)) is a wide-sense stationary zero-mean L-mixing process, using Lemma 8.1 with
p = q = 2, we get

ρ(τ) ≤ Cγ2(|τ |,H0) (6.4)

with some C > 0, thus integrability follows.
It is easy to see, cf. Lemma 6.4 below, that the matrix P ∗ is the asymptotic covariance

matrix of the arithmetic mean
1

2T

∫ T

−T

H0(s, x∗, ω)ds,

i.e. we have

P ∗ = lim
T→∞

2T E [
(

1
2T

∫ T

−T

H0(s, x∗, ω)ds

)(
1

2T

∫ T

−T

H0(s, x∗, ω)ds

)T

]. (6.5)
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We will also need the notation introduced in (3.24):

A∗ =
∂G(x)

∂x

∣∣
x=x∗ .

The value of the asymptotic covariance matrix can be easily guessed. Namely, the assumed
validity of (5.3) implies that, t1/2(xt−x∗) is asymptotically normally distributed with zero mean
and covariance matrix S∗, which satisfies the Lyapunov-equation (6.6) below. This result on
the asymptotic covariance-matrix of the estimator, has strong roots in the classical theory of
stochastic approximation, see [54]. The closest to our result is Theorem 13, Chapter 4.5, Part
II. of [3].

Theorem 6.2 Consider the continuous-time recursive estimation scheme given by (3.16) with
the resetting mechanism (3.17) and (3.18). Assume that the conditions of Theorem 4.1 are
satisfied and in addition (H(s, x∗, ω)) satisfies Condition 6.1. Then the asymptotic covariance-
matrix of the error process (xt − x∗), defined by

S∗ = lim
t→∞

tE[(xt − x∗)(xt − x∗)T ],

exists and it satisfies the Lyapunov-equation

(A∗ + I/2)S∗ + S∗(A∗ + I/2)T + P ∗ = 0, (6.6)

where A∗ is defined above, (see also (3.24)) and P ∗ is defined by (6.3) above. More exactly we
have with some εxx > 0

E[(xt − x∗)(xt − x∗)T ] =
1
t
S∗ + O(t−1−εxx).

Remark. In the case of a stochastic Newton method, i.e. when A∗ = −I, we get

S∗ = P ∗.

In the context of Algorithm DFL, (3.53)-(3.54) this can be directly seen from Theorem 4.4.
Take the example of the recursive LSQ estimation of an AR(p) process given

yn = (θ∗)T φn + en,

where θ∗ is the p-dimensional AR-parameter, φn = (−yn−1, ...,−yn−p)T and en is the noise term
with variance σ2(e). AR-processes are special in the sense that the off-line LSQ estimator can
be computed exactly in a recursive fashion, thus the off-line and on-line estimators, if properly
initialized, coincide and their asymptotic covariance is the same. A non-trivial corollary of
Theorem 5.2 is that this is still the case if both estimators are forced to stay inside a compact
domain using truncation for the off-line estimator and resetting for the on-line estimator.

Let
R∗ = EφnφT

n

assuming stationarity of φn. Then, under well-known conditions the asymptotic covariance
matrix of the LSQ-estimator is known to be

S∗ = σ2(e)(R∗)−1.

For the RLSQ estimator we have the updating term, with x = θ,

Hn(s, θ, ω) = R−1φn(yn − φT
nθ)

from which we get
G(θ) = θ∗ − θ

thus the RLSQ-method is a stochastic Newton method. Since

Hn(s, θ∗, ω) = R−1φnen
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we get
P ∗ = σ2(e)(R∗)−1

which indeed agrees with S∗.

Remark. For the discrete time method, Algorithm DR, we have

xl
t − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1
s
Hc(s, x∗, ω)ds + OM (t−1/2−εx).

see (4.40) and the analysis given below is applicable. Note however that now we get the familiar
expression, see [54],

P ∗ =
∫ ∞

−∞
E [Hc

0(τ, x∗, ω)HcT
0 (0, x∗, ω)]dτ =

∞∑
−∞

E [H0(m,x∗, ω)HT
0 (0, x∗, ω)]. (6.7)

Proof: Reduction to the process (x̃3,nh). The claim of the theorem can be reformulated in terms
of the transformed process, with t = er, as follows: we have with some εxx > 0

E[x̃rx̃
T
r ] = S∗ + O(e−εxxr). (6.8)

Now by Lemma 5.1 we have with r = nh

xt − x∗ =
1

er/2
x̃r =

1
enh/2

x̃3,nh +
1

enh/2
OM (e−εxnh + h1/2e−εx2nh + h−ce−εx3nh). (6.9)

Multiplying both sides enh/2, squaring them and taking into account the second part of Lemma
5.1, we get the following key lemma:

Lemma 6.1 We have with r = nh:

E[x̃rx̃
T
r ] = E[x̃3,nhx̃T

3,nh] + O(e−εxnh + h1/2e−εx2nh + h−ce−εx3nh). (6.10)

This error-estimate seems to be fragile, due to Terms 3 and 4 on the right hand side, in view of
the fact that the left hand side is O(h), but this weakness will be eliminated at the very end of
the proof of Theorem 6.2 by appropriate choice of h.
Thus the study of the covariance-matrix of xt is reduced to the study of the covariance matrix
of x̃3,nh, which will be denoted by Rx̃

3,n:

Rx̃
3,n = E [x̃3,nhx̃T

3,nh].

Now change n for n + 1 and note that x̃3,(n+1)h is defined via the discrete-time dynamical
system (5.22), in which the input process (ũ3,n+1) consists of a sequence of independent random
variables. The covariance-matrix of ũ3,m will be denoted by

Rũ
3,m = E[ũ3,mũT

3,m].

In what follows we shall develop a sequence of approximations of ũ3,m to get a nice approximation
for Rũ

3,m.

The approximating process (ũ4,m). Let us recall, see (5.9), that in the original time-scale we have

ũ1,m+1 =
∫ e(m+1)h

emh

(
s

e(m+1)h

)(−A∗−I/2) 1
s1/2

H(s, x∗, ω)ds.

Approximate ũ1,m+1 by replacing the kernel within the integrand by 1, i.e. set

ũ4,m+1 =
∫ e(m+1)h

emh

1
s1/2

H(s, x∗, ω)ds.
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Claim U4. We have
ũ1,m+1 − ũ4,m+1 = OM (h3/2). (6.11)

To prove the claim note that the approximation error can be written as

ũ1,m+1 − ũ4,m+1 =
∫ e(m+1)h

emh

((
s

e(m+1)h

)(−A∗−I/2)

− I

)
1

s1/2
H(s, x∗, ω)ds.

Using the moment inequality given as Theorem 8.1 we get for any q ≥ 2 that
E1/q|ũ1,m+1 − ũ4,m+1|q is bounded from above by

Cq

(∫ e(m+1)h

emh

||
((

s

e(m+1)h

)(−A∗−I/2)

− I

)
1

s1/2
||2ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Now, ‖(s/e(m+1)h)(−A∗−I/2) − I‖ = ‖e(−A∗−I/2)(log s−(m+1)h) − I‖ ≤ ch, with some c, which
depends only on A∗, for 0 < h ≤ h0, since −h ≤ (log s− (m + 1)h) ≤ 0. (Apply a Taylor-series
expansion of the matrix-exponential to get the desired inequality). Thus we get

E1/q|ũ1,m+1 − ũ4,m+1|q ≤ Cq

(∫ e(m+1)h

emh

(ch)2
1
s
ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

and from here
E1/q|ũ1,m+1 − ũ4,m+1|q ≤ Ch3/2,

where C is independent of h and thus Claim U4 follows.

The approximating process (ũ5,m+1). This approximation is obtained by replacing 1
s1/2 within

the integral by a constant:

ũ5,m+1 =
1

emh/2

∫ e(m+1)h

emh

H(s, x∗, ω)ds.

Claim U5. We have
ũ4,m+1 − ũ5,m+1 = OM (h3/2). (6.12)

Indeed, we have

ũ5,m+1 − ũ4,m+1 =
∫ e(m+1)h

emh

(
1

emh/2
− 1

s1/2

)
H(s, x∗, ω)ds,

and we can apply the moment inequality Theorem 8.1. For this purpose we estimate the inte-
grand:

0 ≤
(

1
emh/2

− 1
s1/2

)
≤

(
1

emh/2
− 1

e(m+1)h/2

)
≤ 1

(emh/2)2
(e(m+1)h/2 − emh/2)

≤ 1
emh/2

(eh/2 − 1) ≤ 1
emh/2

h

for small h. Thus we get for q ≥ 2

E1/q|ũ5,m+1 − ũ4,m+1|q ≤ Cq

(∫ e(m+1)h

emh

(
1

emh/2
− 1

s1/2

)2

ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)) ≤

≤ Cq

(∫ e(m+1)h

emh

h2

emh
ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)) = O(h3/2),
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and the claim follows.

The approximating process (ũ6,m+1). This approximation is obtained by replacing H(s, x∗, ω)
by H0(s, x∗, ω) in the definition of ũ6,m+1, i.e. we define

ũ6,m+1 =
1

emh/2

∫ e(m+1)h

emh

H0(s, x∗, ω)ds. (6.13)

Claim U6. We have

ũ5,m+1 − ũ6,m+1 = OM (he−mh(1/2+εH)) and ũ5,m+1 − ũ6,m+1 = OM (h1/2). (6.14)

Indeed, we have, using (6.1),

ũ5,m+1 − ũ6,m+1 =
1

emh/2

∫ e(m+1)h

emh

ηsds =

=
1

emh/2
(e(m+1)h − emh)OM (e−mh(1+εH)) = OM (he−mh(1/2+εH))

and the first part of the claim follows. The second part is a direct consequence of Theorem 8.1.
Summarizing the equations expressing the approximation errors between the successive values

ũ3, ũ2, ũ1, ũ4, ũ5, ũ6 given by (5.14), (5.18), (6.11), (6.12), (6.14) we get

Lemma 6.2 Let c be as in Condition 3.1, requiring that H be L+ mixing. Then we have

ũ3,m = ũ6,m + OM (h−ce−(1/2+cεδ)mh + h1/2e−(1−εδ)mh/2 + +h3/2 + he−mh(1/2+εH)), (6.15)

and all error terms are also OM (h1/2).

Squaring this equation we get for Rũ
3,m+1 = E [ũ3,mũT

3,m]

Rũ
3,m+1 = E [ũ6,mũT

6,m] + O(h1/2−ce−(1/2+cεδ)mh + O(he−(1−εδ)mh/2 + h2 + h3/2e−mh(1/2+εH)).
(6.16)

The covariance matrix of ũ6,m+1. Next we show that the covariance matrix of the approximation
ũ6,m+1 can be expressed in terms of the matrix P ∗. This is no surprise in view of the assumed
validity of (6.5), but to capture the rate of convergence extra work is needed.

Lemma 6.3 Let c be as in Condition 3.1, requiring that H be L+ mixing. Then we have

E[ũ6,m+1ũ
T
6,m+1] = hP ∗ + O(h1−ce−cmh). (6.17)

Proof: Consider normalized arithmetic means of the form:

sA,B =
1

(B −A)1/2

∫ B

A

H0(s, x∗, ω)ds

with A < B. It is obvious that

E [sA,B sT
A,B ] =

1
B −A

∫ B

A

∫ B

A

ρ(s− s′) ds ds′,

where ρ(τ) is the autocovariance function of the process H0 = (H0(s, x∗, ω)).
Note that if H0 = (H0(s, x∗, ω)) is a wide-sense stationary zero-mean L+-mixing process then

we have, using (6.4) and the inequality γ2(|τ |,H0) ≤ C(1 + |τ |)−c,

ρ(τ) ≤ C(1 + |τ |)−c. (6.18)

with some C, c > 0. Applying Lemma 6.4 below with

A = emh andB = e(m+1)h
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we have (B−A) = emh(h+O(h2)) for small h. Thus we get, using the inequality (1+B−A)−c <
C ′(B −A)−c,

1
B −A

∫ B

A

∫ B

A

ρ(s− s′) ds ds′ = P ∗ + O(e−cmhh−c),

and from here we get for the covariance-matrix of ũ6,m+1

E[ũ6,m+1ũ
T
6,m+1] =

1
emh

∫ e(m+1)h

emh

∫ e(m+1)h

emh

ρ(s− s′)dsds′ =
B −A

emh
(P ∗ + O(e−cmhh−c)),

and Lemma 6.3 follows.

Lemma 6.4 Let (ρ(τ)),−∞ < τ < ∞ be a matrix-valued measurable function process, satisfying
||ρ(τ)|| ≤ C(1 + |τ |)−c with some C, c > 0. Then we have for any A < B

1
B −A

∫ B

A

∫ B

A

ρ(s− s′)ds ds′ = P ∗ + O((1 + B −A)−c).

Proof: Introduce the new variables τ = s − s′, µ = s + s′. This change of coordinates has
a Jacobian with determinant 2, i.e. dτ dµ = 2ds ds′. The new variable τ takes it values
between −(B − A) and B − A and for each fixed τ the possible values of µ are in the interval
(2A + |τ |, 2B − |τ |). Thus

PA,B =
1

B −A

∫ B−A

−(B−A)

∫ 2B−|τ |

2A+|τ |
ρ(τ)

1
2
dτ dµ =

=
1

B −A

∫ B−A

−(B−A)

(2B − 2A− 2|τ |)ρ(τ)
1
2
dτ dµ =

∫ B−A

−(B−A)

(
1− |τ |

B −A

)
ρ(τ)dτ.

From here it follows immediately that

||PA,B || = || 1
B −A

∫ B

A

∫ B

A

ρ(s− s′)ds ds′|| ≤
∫ B−A

−(B−A)

||ρ(τ)||dτ ≤
∫ ∞

−∞
||ρ(τ)||dτ. (6.19)

This inequality will be used subsequently. Now, write

∫ B−A

−(B−A)

(
1− |τ |

B −A

)
ρ(τ)dτ =

∫ B−A

−(B−A)

ρ(τ)dτ −
∫ B−A

−(B−A)

|τ |
B −A

ρ(τ)dτ.

Then
∫ B−A

−(B−A)

ρ(τ)dτ − P ∗ =
∫ B−A

−(B−A)

ρ(τ)dτ −
∫ ∞

−∞
ρ(τ)dτ =

−
∫ −(B−A)

−∞
ρ(τ)dτ −

∫ ∞

B−A

ρ(τ)dτ.

Taking into account that ||ρ(τ)|| ≤ C(1 + |τ |)−1−c, we get that

|| −
∫ −(B−A)

−∞
ρ(τ)dτ −

∫ ∞

B−A

ρ(τ)dτ || ≤ 2C

c
(1 + B −A)−c. (6.20)

On the other hand
∫ B−A

−(B−A)

|τ |
B −A

||ρ(τ)||dτ ≤
∫ B−A

−(B−A)

|τ |
B −A

C(1 + |τ |)−1−cdτ.
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Write |τ |C(1 + |τ |)−1−c ≤ (1 + |τ |)C(1 + |τ |)−1−c = C(1 + |τ |)−c and use the symmetry of the
last integrand above to get the upper bound

2
∫ B−A

0

1
B −A

C(1 + τ)−cdτ ≤ 2
B −A

C

(−c + 1)
(1 + τ)−c+1|B−A

0 =

2
B −A

C

(−c + 1)
((1 + B −A)−c+1 − 1)) ≤ C ′(1 + B −A)−c

and combining this with (6.20) the proposition of the lemma follows.

The final approximation of Rũ
3,m+1: Combining (6.16) and (6.17) we get

Rũ
3,m+1 = E [ũ3,mũT

3,m] = hP ∗ +

O(h1−ce−cmh + h1/2−ce−(1/2+cεδ)mh + he−(1−εδ)mh/2 + h2 + h3/2e−mh(1/2+εH)).(6.21)

To simplify notations write the residual terms in the form hβie−εimh, i = 1, ..., 5, with

β1 = 1− c, ε1 = c
β2 = 1/2− c, ε2 = 1/2 + cεδ

β3 = 1, ε3 = (1− εδ)/2
β4 = 2, ε4 = 0
β5 = 3/2, ε5 = 1/2 + εH .

(6.22)

Obviously we have εi > 0 for i 6= 4. For i = 4 we have ε4 = 0, but then β4 = 2. With this
notations we can formulate the following lemma:

Lemma 6.5 We have with hβie−εimh, i = 1, ..., 5 defined under (6.22)

Rũ
3,m+1 = E [ũ3,mũT

3,m] = hP ∗ +
5∑

i=1

O(hβie−εimh). (6.23)

The discrete-time Lyapunov-equation. Consider the discrete-time dynamics followed by (x̃3,nh),
given by (5.22). Since the input process is a sequence of independent random variables it follows
that the covariance matrix of x̃3,nh, denoted by Rx̃

3,n Rx̃
3,n+1, satisfies the Lyapunov-equation:

Rx̃
3,n+1 = e(A∗+I/2)hRx̃

3,ne(A∗+I/2)T h + Rũ
3,n+1,

with zero initial condition. Substituting Rũ
3,n+1 from (6.23) and setting n = m, we get

Rx̃
3,m+1 = e(A∗+I/2)hRx̃

3,me(A∗+I/2)T h + hP ∗ +
5∑

i=1

O(hβie−εimh). (6.24)

Solving this iteratively in the range 0 ≤ m ≤ n we get

Rx̃
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)h hP ∗ e(A∗+I/2)T (n−m)h +

+
n∑

m=0

e(A∗+I/2)(n−m)h

( 5∑

i=1

hβie−εimh

)
e(A∗+I/2)T (n−m)h. (6.25)

The contributions of the terms hβie−εimh, i = 1, ..., 5 are estimated as follows:

∆i = ||
n∑

m=0

e(A∗+I/2)(n−m)hChβie−εimhe(A∗+I/2)T (n−m)h|| ≤

≤ C ′
n∑

m=0

e−2α(n−m)h · hβie−εimh.
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Applying Lemma 8.5 we get, assuming that 2α 6= εi, with

εi = min(2α, εi) (6.26)

the upper bound
∆i ≤ C ′hβie−εinh/|e2αh − eεih| = O(hβi−1e−εinh), (6.27)

and thus

Rx̃
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)h hP ∗ e(A∗+I/2)T (n−m)h +

+
n∑

m=0

O(hβi−1e−εinh). (6.28)

Obviously we have εi > 0 for i 6= 4. For i = 4 we have ε4 = 0, but then β4 = 2.
Next we consider the first, dominant term on the right hand side of (6.28) and define its

approximation by setting m′ = n−m and extending the summation to ∞:

Rx̃d
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)hhP ∗e(A∗+I/2)T (n−m)h (6.29)

Rx̃
3∗ =

∞∑

m′=0

e(A∗+I/2)m′hhP ∗e(A∗+I/2)T m′h. (6.30)

Claim. We have
Rx̃d

3,n+1 −Rx̃
3∗ = O(e−2αnh). (6.31)

Indeed, writing m′ = n−m and taking out the left-factor e(A∗+I/2)(n+1)h and the right factor
e(A∗+I/2)T (n+1)h we have

Rx̃d
3,n+1 −Rx̃

3∗ =
∞∑

m′=n+1

e(A∗+I/2)m′hhP ∗e(A∗+I/2)T m′h

e(A∗+I/2)(n+1)h

( ∞∑
m=0

e(A∗+I/2)mhhP ∗e(A∗+I/2)T mh

)
e(A∗+I/2)T (n+1)h,

the operator norm of which is obviously majorized by C ′e−2αnh, as claimed.

Lemma 6.6 We have
Rx̃

3∗ − S∗ = O(h). (6.32)

Proof: The covariance matrix Rx̃
3∗ is the solution of the algebraic Lyapunov- equation

Rx̃
3∗ = e(A∗+I/2)hRx̃

3∗e
(A∗+I/2)T h + hP ∗.

Taking into account the equality e(A∗+I/2)h = I + (A∗ + I/2)h + O(h2), this can be written as

Rx̃
3∗ = (I + (A∗ + I/2)h + O(h2))Rx̃

3∗(I + (A∗ + I/2)T h + O(h2)) + hP ∗

which is simplified to

0 = (A∗ + I/2)Rx̃
3∗ + Rx̃

3∗(A
∗ + I/2)T + P ∗ + O(h),

and the stability of (A∗ + I/2) implies the claim. Combining (6.28), (6.31) and (6.32) we get,
assuming that 2α 6= εi,

Rx̃
3,n+1 = S∗ + O(e−2αnh + h) +

5∑

i=1

O(hβi−1e−εinh). (6.33)
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The final approximation of Rx̃
3,n+1. For a given r we choose h and n in the following way: let

εh > 0 and let h satisfy
e−εhr ≤ h ≤ 2e−εhr, (6.34)

and in addition let r be an integer multiple of h, say r = nh. Then from (6.33) we get

Rx̃
3,n+1 = S∗ + O(e−2αnh + e−εhnh) +

5∑

i=1

O(e−(βi−1)εhnhe−εinh). (6.35)

Combining this with (6.10) and substituting h = e−εhr = e−εhnh we get

E[x̃nhx̃T
nh] = S∗ + O(e−2αnh + e−εhnh) +

5∑

i=1

O(e−(βi−1)εhnhe−εinh) +

O(e−εxnh + e−εhnh/2e−εx2nh + ecεhnhe−εx3nh). (6.36)

The generic form of the error terms is O(e−γnh), where the values of γ are the following:

2α, εh, (βi − 1)εh + εi, i = 1, ..., 5,
εx, εh/2 + εx2, cεh − εx3.

Obviously for sufficiently small εh all these constant are positive and thus (6.8) and the claim of
Theorem 6.2 follows.

7 Two applications

The usefulness of the results of the present paper is demonstrated by describing two applications.
In the first example the pathwise cumulative regret is quantified for an on-line adaptive predic-
tor of multi-variable linear stochastic systems, see (7.8). It is a previously unpublished result,
presented at MTNS’96. In the second example a similar measure of performance degradation for
the minimum-variance self-tuning regulator is considered. This problem, that had been formu-
lated as far back as 1971 in [2] in a slightly different context from ours, has been solved only in
1994, see [28]. The result of [28] is restated in (7.19). A further application for indirect adaptive
control of multi-variable linear stochastic systems is given in [27]. All these applications rely on
the results of the present paper, in particular Theorems 4.3, 5.1. and 6.2.

Multivariable adaptive prediction. Let (yn), 0 ≤ n < ∞ be a vector-valued, wide-sense
stationary stochastic process defined by a finite-dimensional linear stochastic system:

y = H(θ∗)e. (7.1)

Here H(θ) = I + C(θ)(q−1I −A(θ))−1B(θ) is a square, causal, rational transfer function of the
backward shift operator q−1.

Condition 7.1 H(θ) is defined for θ ∈ D, where D ⊂ IRp is an open set and in its state-space
realization the matrices (A(θ), B(θ), C(θ)) are twice continuously differentiable functions of θ.
Moreover H(θ) is stable and inverse stable.

Condition 7.2 The system-noise process (en), 0 ≤ n < ∞ is an M-bounded, vector-valued
wide-sense stationary orthogonal process. In addition there is an increasing sequence of σ-fields
(Fn), 0 ≤ n < ∞, such that (en) is a martingale-difference process with constant conditional
covariance:

E [en|Fn−1] = 0, E(eneT
n |Fn−1) = Λ∗

almost surely, with Λ∗ > 0.

These conditions will be called the standard conditions for multivariable linear stochastic systems.
In the multivariable version of the prediction error method we have to estimate θ∗ and Λ∗ jointly
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to improve efficiency. Let θ ∈ D and let Λ be a symmetric positive definite matrix and then
define the second order stationary process ε(θ) by

ε(θ) = H−1(θ)y.

Then define the cost function

VN (θ, Λ) =
1
2

N∑
n=1

εT
n (θ)Λ−1εn(θ) +

N

2
log detΛ. (7.2)

If (en) is an i.i.d. sequence of Gaussian random vectors with distribution N(0, Λ∗), then VN (θ, Λ)
is the negative conditional log-likelihood function, except for an additive constant. This cost
function will be minimized in (θN , ΛN ) and the minimizing value, the off-line estimator of (θ∗, Λ∗)
will be denoted by (θ̂N , Λ̂N ). A more precise definition of (θ̂N , Λ̂N ), taking into account the
possibility of the existence of several local minima, can be given following [18].

Define the asymptotic cost function by

W (θ, Λ) = lim
n→∞

1
2
E [εT

n (θ)Λ−1εn(θ)] +
1
2

log detΛ. (7.3)

It is easy to see that for any symmetric, positive definite Λ

Wθ(θ∗,Λ) = 0. (7.4)

The Hessian of W with respect to θ at (θ∗,Λ∗) is

R∗ = Wθθ(θ∗, Λ∗) = lim
n→∞

E [εT
θn(θ∗)(Λ∗)−1εθn(θ∗)]. (7.5)

The above cost function can be treated with the extension of the DFL scheme indicated by an
alternative definition of the random filed H(n, x, ω) in (3.47).

Condition 7.3 The equation (7.4) has a unique solution θ = θ∗ for any symmetric, positive
definite Λ and the Hessian-matrix Wθθ(θ∗, Λ∗) is positive definite.

The performance index of interest is the squared absolute value of the prediction error. Let
Σθθ be the asymptotic covariance matrix of the off-line prediction error estimator θ̂n. Then it is
well-known that Σθθ = (R∗)−1. Let

T ∗ = 2
∂2

∂θ2
lim

n→∞
E [εT

n (θ)εn(θ)]
∣∣
θ=θ∗ (7.6)

be the second-order sensitivity matrix of the performance index. Then we have the following
result:

Theorem 7.1 Let us consider a multivariable system satisfying Conditions 7.1, 7.2 and 7.3. In
addition assume that (en) is L-mixing. Then we have almost surely

lim
N→∞

N∑
n=1

(|εn(θ̂n−1)|2 − |en|2)/ log N =
1
2
TrT ∗Σθθ. (7.7)

The expression 1
2TrT ∗ will be called the normalized cost of adaptation. An important difference

between ARMA and multivariable systems is that, unless Λ∗ 6= cI, with c being a scalar, the
trace-formula given on the right hand side of (7.7) can not be further simplified. However it can be
shown that 1

2TrT ∗Σθθ is invariant with respect to diffeomorphic transformation of the parameter-
space, while restriction of the parameter space, i.e. writing θ = g(η) with dim η < dim θ, with g
being a smooth function, reduces the normalized cost of adaptation. Note, that the normalized
cost of adaptation is not determined solely by structural parameters, it may depend also on the
actual multivariable system, unlike in the ARMA case.
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To extend this result for adaptive predictors defined in terms of recursive estimators we rely
on Theorem 4.3 and we get the following result:

Claim. Let ̂̂
θn be a recursive estimator of θ∗ with asymptotic covariance matrix Σθθ. Then

under appropriate technical conditions, obtained by specializing the conditions of Theorem 4.3,
we have

lim
N→∞

N∑
n=1

(|εn( ̂̂θn−1)|2 − |en|2)/ log N =
1
2
TrT ∗Σθθ (7.8)

almost surely. In analogy with the ARMA-case, if we use a stochastic Newton method, then we
have

Σθθ = Σθθ.

The minimum-variance self-tuning regulator. Consider now a stochastic control system in
ARMAX(n,m, p) representation defined by the relation

A∗(q−1)y = q−1B∗(q−1)u + C∗(q−1)e, (7.9)

where A∗(q−1), B∗(q−1) and C∗(q−1) are polynomials of the backward shift operator q−1 of
degree n,m, p respectively. Their coefficients are denoted by a∗i , b

∗
i , c

∗
i , respectively, with a∗0 =

1, a∗n 6= 0, b∗0 6= 0, b∗m 6= 0, c∗0 = 1, c∗p 6= 0. Here u is the input process, e is the noise process
and y is the output process. The notation u is a shorthand for (u(t)), 0 ≤ t ≤ ∞. Assume
that the polynomials B∗ and C∗ are stable and that deg C∗ ≤ deg A∗. By extending the vector
(c∗1, . . . , c

∗
p) with zeros, if necessary, we can actually assume that deg A∗ = deg C∗. The stochastic

process e is a zero mean wide-sense stationary orthogonal process, i.e. for all t, s ≥ 0 we have
Ee(t) = 0 and E [e(s)e(t)] = σ2(e)δst, where δst is the Kronecker-symbol.

The minimum-variance control for the ARMAX system given under (7.9) is given by (cf. [2])

q−1B∗u = (A∗ − C∗)y. (7.10)

Using this control law we get, under the assumption that the initial values are all zero, y(t) = e(t).
(7.10) can be written in the form

u(t− 1) = −(η∗)T φ(t), (7.11)

where
η∗ =

1
b∗0

(a∗1 − c∗1, . . . , a
∗
n − c∗n, b∗1, . . . b

∗
m)T (7.12)

and
φ(t) = (−y(t− 1), . . . ,−y(t− n), u(t− 2), . . . , u(t−m− 1)). (7.13)

If the values of the parameters of the stochastic control system are unknown then a stochastic
adaptive control procedure will be needed. Within stochastic adaptive control a special procedure
is the self-tuning regulation, that has been proposed in [2] for minimum variance control. For a
new perspective of this procedure see [63]. This is a stochastic approximation procedure defined
as follows: let η̂(0) be an initial estimate of η∗ and let η̂(t− 1) be an estimate computed at time
t− 1. Then define the control action by

u(t− 1) = −η̂(t− 1) φ(t). (7.14)

This is followed by observing y(t) which is generated by (7.9). Finally we generate the next
estimates η̂(t) by

η̂(t) = η̂(t− 1) + R−1 1
t

φ(t)y(t), (7.15)

where R is a symmetric positive definite matrix. A basic question in the context of stochastic
adaptive control is the characterization of the performance degradation

y2(t)− e2(t) (7.16)
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and to establish its pathwise properties. This problem was first formulated in [2]. It has been
open for a long time, until a solution was presented in [28], using the results of the present paper.

The performance of the minimum variance self-tuning regulator had been studied in [48, 49].
In [48] the right order of magnitude for the so-called cumulative regret was found for general
ARMAX systems. In [49] the right constant in a tight upper bound for cumulative regret had
been obtained for ARX systems. For a survey see [46]. Note, however, that in these papers so-
called indirect adaptive control procedures had been considered, where identifiability is ensured
by the injection of rare shocks with diminishing frequency into the system. Similar results were
obtained in [31] and in [32].

Let D ⊂ IRn+m be a set of candidate controller-parameters to be specified below. For any
η ∈ D and for t ≥ 0 we consider the control law

u(t− 1) = −ηT φ(t),

where φ(t) is defined above in (7.13). Thus we get a closed-loop system in which both u and y
depend on η. To stress this dependence we write u(t) = ū(t, η) and y(t) = ȳ(t, η). Let D denote
the open set of η’s in IRm+n such that the closed loop system is stable. Define the nonlinear
vector-valued function

G(η) ∆= lim
t→∞

E [ φ̄(t, η)ȳ(t, η)]. (7.17)

It is easy to see that we have G(η∗) = 0. Let S∗ denote the asymptotic covariance matrix of η̂(t)
i.e. let

S∗ = lim
t→∞

t · E [(η̂(t)− η∗)(η̂(t)− η∗)T ],

assuming that the limit exists. Define the second order sensitivity matrix

T ∗ = lim
t→∞

E [
∂2

∂η2 |η=η∗
ȳ2(t, η)]. (7.18)

Claim (see [28]). Consider the minimum-variance self-tuning regulator for an ARMAX(n,m, p)
system given by (7.15). Then, under appropriate technical conditions, obtained by specializing
the conditions of Theorem 4.3, we have the following pathwise characterization of the cumulative
performance degradation:

lim
N→∞

N∑
t=1

(y2(t)− e2(t))/ log N =
1
2
Tr T ∗S∗ (7.19)

almost surely. Moreover, for any symmetric positive definite R we have

1
2
Tr T ∗S∗ ≥ σ2(e)(m + n). (7.20)

The inequality (7.20) is an equality if and only if R = −Gη(η∗) and C∗ = 1.
The proof of (7.19) follows [24]. We note in passing that it has been a common belief that

Gη(η∗) is not computable. However, using a technique of Hjalmarsson (cf. [39]) it can be shown
that for certain interesting physical systems Gη(η∗) is in fact computable. The proof of (7.19)
follows [24].

Conclusion. Performance degradation due to statistical uncertainty, also called regret, is of
great interest in adaptive prediction and control of stochastic systems. To quantify the path-
wise cumulative regret we need technical tools similar to those developed in [24] in the context
of adaptive prediction of ARMA-processes. These new tools have been developed in this pa-
per. The usefulness of the results in stochastic adaptive control has been demonstrated for the
minimum-variance self-tuning regulator for ARMAX-systems in Section 7, see also [28]. A fur-
ther application for indirect adaptive control of multi-variable linear stochastic systems is given
in [27].

The results can be also applied in the context of identification for control, see [29, 40, 41]. For
any fixed feedback strategy the covariance matrix of the estimation error and consequently the
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cumulative regret over any finite horizon will depend on the feedback strategy. The cumulative
regret over finite horizon distorts the performance of the controller and this distortion can be
precisely characterized using the results of the present paper. Thus a controller with optimal
overall performance over a fixed finite horizon can be developed, at least in theory, i.e. pretending
that we know the systems dynamics.

A further potential area of application is adaptive experimental design, see [30], in which the
objective function to be minimized is the trace of the covariance matrix of the estimation error,
which can be computed experimentally for any fixed input pattern.

Another, more classical possible application is the derivation of limit results such as LIL and
invariance principles along the lines of [38].

The scope of applications can be enlarged by extending the technical results themselves. The
extension of the results of the present paper to Kiefer-Wolfwitz-type stochastic approximation
procedures, such as the simultaneous perturbation stochastic approximation or SPSA method
due to Spall, [61] and [62], seems to be possible.

8 Appendix: Auxiliary results

Lemma 8.1 Let (xt), t ≥ 0 be a zero-mean L-mixing process with respect to (Ft,F+
t ) and let y

be an Fs-measurable random variable for some 0 ≤ s ≤ t , such that its moments, which appear
in the inequality below, are finite. Then for every 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1 we have

|Exty| ≤ 2γp(t− s, x)E1/q|y|q.
Analogous inequalities for strong mixing stationary sequences are given in [9] and for uniformly
mixing stationary sequences in [42]. A concise survey of these inequalities is given in Chapter
7.2 of [15] and Appendix III of [33]. Here we restate an improved Hölder inequality under the
weakest condition on mixing, namely strong-mixing or α-mixing (cf. Corollary 2.5 of Chapter
7.2 of [15]):

Lemma 8.2 Let p, q, r > 1 be such that p−1 + q−1 + r−1 = 1. Let Y and Z be H-measurable
and G-measurable random variables such that ||Y ||q and ||Z||r are finite, respectively. Then

|E[Y Z]− E[Y ]E[Z]| ≤ Cα(H,G)1/p||Y ||q||Z||r. (8.1)

The improved Hölder inequality of Lemma 8.1 plays a key role in deriving the following moment-
inequality (cf. Theorem 1.1 in [17]):

Theorem 8.1 Let (ut), t ≥ 0 be a zero-mean L-mixing process. Let (ft) be a function in L2[0, T ].
Then we have for all m ≥ 2 with Cm = 2(m− 1)1/2

E1/m|
∫ T

0

fsusds|m ≤ Cm(
∫ T

0

f2
t dt)1/2M1/2

m (u) · Γ1/2
m (u).

Extension of the statement to vector-valued processes is an elementary exercise, but obviously
the constant Cm will be different. Extension to random (ft) is not possible in general, but an
extension is possible for multiple integrals with deterministic kernel (cf. [21]). Here we need only
the following special result:

Theorem 8.2 Let (ut) and (vt) be zero mean L-mixing processes. Then we have

IT0 =
∫ T

T0

1
t
ut

∫ t

T0

1
s
vsdsdt = OM (T−1

0 ).

The following simple lemma is stated as Corollary 3.5 in [24].

Lemma 8.3 Let (Ft,F+
t ) be a pair of families of σ-algebras as in Section 3 and let (xt), t ≥ 0

be an Ft-adapted, measurable stochastic process. Then (xt) is L-mixing with respect to (Ft,F+
t )

if and only if the processes (xn+d) are L-mixing with respect to (Fn+d,F+
n+d), uniformly in d for

0 ≤ d < 1.
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Let us consider a stochastic process (un(θ)) with θ ∈ D ⊂ IRp, where D is an open set,
which is measurable, separable, M -bounded and M -Lipschitz-continuous in θ for θ ∈ D. By
Kolmogorov’s theorem the realizations of (xn(θ)) are continuous in θ with probability 1, hence
we can define for almost all ω

u∗n = max
θ∈D0

|un(θ)|,

where D0 ⊂ D is a compact domain. The following result is given as Theorem 3.4 in [17].

Theorem 8.3 Assume that (un(θ)) is a stochastic process which is measurable, separable, M -
bounded and M -Lipschitz continuous in θ for θ ∈ D. Let u∗n be the random variable defined
above. Then we have for all positive integers q and s > p

Mq(u∗) ≤ C(Mqs(u) + Mqs(∆u/∆θ)),

where C depends only on p, q, s, and D0, D.

A continuous-time version of following lemma was given in [17] as Lemma 2.4:

Lemma 8.4 Let (un), n ≥ 0 be a zero-mean L-mixing IRp-valued process and define another
IRp-valued process (xn) by

xn+1 = Axn + un, x0 = 0,

where the spectral norm of A is smaller than 1, say we have ||An|| ≤ Cαn with some C > 0 and
0 < α < 1. Then the output process (xn) is L-mixing.

The first part of the following result was stated in Lemma 7.4 of [19]. The second part of the
quoted lemma was not correctly stated and is therefore restated and proved here.

Lemma 8.5 Let (un), n ≥ 0 be an M -bounded process and define a process (xn) by

xn+1 = λxn + ρnun, x0 = 0, (8.2)

where 0 < λ < ρ. Then for any m ≥ 1 we have

E1/m|xn|m ≤ ρn

ρ− λ
Mm(u).

On the other hand if 0 < ρ < λ then we have

E1/m|xn|m ≤ λn

λ− ρ
Mm(u).

Proof: Let 0 < λ < ρ and set zn = ρ−nxn. Then we have, after multiplying (8.2) by ρ−(n+1),

zn+1 = λρ−1zn + ρ−1un,

which can be solved explicitly for zn to get

zn =
n−1∑

i=0

(λρ−1)iρ−1un−1−i.

Using the triangle inequality for the Lm(Ω,F , P ) norm and the condition 0 < λ < ρ we get

Mm(z) ≤ (1− λρ−1)−1ρ−1Mm(u)

from which the first proposition follows.
A useful reformulation of the above argument is the following: writing

xn = ρnzn =
n−1∑

i=0

λiρn−1−iun−1−i (8.3)
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we have

E1/m|xn|m ≤
n−1∑

i=0

λiρn−1−iE1/m|un−1−i|m ≤
n−1∑

i=0

λiρn−1−iMq(u). (8.4)

Thus it is sufficient to establish that for 0 < λ < ρ

n−1∑

i=0

λiρn−1−i ≤ ρn

ρ− λ
(8.5)

and this is obtained from the above argument with un = 1 for all n. The advantage of this
reformulation is that the left hand side is the convolution of the sequences (λn) and (ρn) and
thus it is symmetric in λ and ρ.

In the case when 0 < ρ < λ we use (8.4) to estimate E1/m|xn|m, but the role of λ and ρ is
interchanged, thus we get

E1/m|xn|m ≤ λn

λ− ρ
Mm(u).

Remark. A simple corollary is that

n−1∑

i=0

λiρn−1−i ≤ max (λn, ρn)
|ρ− λ| . (8.6)

The lemma below has been used for ODE analysis of stochastic approximation processes in
[16]. The conditions are similar to Condition 3.4, (i). Consider the ordinary differential equation

ẏt = F (t, yt), ys = ξ, s ≥ 1. (8.7)

The solution of the above ODE will be denoted by y(t, s, ξ) in the time interval where it exists
and is unique.

Condition 8.1 F = (F (t, y)) is defined for t ≥ 1, y ∈ D where D ⊂ IRp is an open set and F
is continuously differentiable in (t, y). It is assumed that there exists a compact domain D′

0 ⊂ D
such that y(t, s, ξ) ∈ D for all ξ ∈ D′

0 and 1 ≤ s ≤ t < ∞.

Lemma 8.6 Assume that Condition 8.1 is satisfied. Let (xt), 1 ≤ t < ∞ be a continuous,
piecewise continuously differentiable curve such that xt ∈ D′

0 for t ≥ 1 and x1 = y1 = ξ ∈ D′
0.

Then for t ≥ 1

xt − yt =
∫ t

1

∂

∂ξ
y(t, r, xr)

(
ẋr − F (r, xr)

)
dr. (8.8)

Proof: Write zr = y(t, r, xr). Obviously the left hand side of (8.8) can be written as zt− z1 and
we have

zt − z1 =
∫ t

1

żrdr =
∫ t

1

(
yr(t, r, xr) + yξ(t, r, xr)ẋr

)
dr. (8.9)

Taking into account the equality yr(t, r, xr) = −yξ(t, r, xr) · F (t, xr) we get the lemma.
A discretized version of the above lemma has been used implicitly in the final step of the

proof of Theorem 1.1. of [19], see (2.10) of [19]. We now formulate this lemma with explicit
conditions. It has been used in the proof of Lemma 4.4.

Condition 8.2 Assume that D′
0 is convex and there exists a compact set D0 ⊂ D′

0 such that
for all x ∈ D0 and t ≥ s ≥ 1 we have y(t, s, x) ∈ D′

0.

Let 1 = s0 ≤ s2 ≤ ... ≤ sn ≤ sn+1 = t and let (xsi) ∈ D0, i = 0, 1, ..., n be a sequence such that
x1 = y1 = ξ ∈ D0. These point are considered as approximations to ysi = y(si, 1, ξ). We will
estimate the tracking error xt − yt in terms of local tracking errors

(xsi − y(si, si−1, xsi−1)).
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Lemma 8.7 Let F = (F (t, y)) satisfy Conditions 8.1 and 8.2 and let (xsi) ∈ D0, i = 0, 1, ..., n
be a sequence such that x1 = y1 = ξ. Then

xt − yt = (xt − y(t, sn, xsn
)) +

n∑

i=1

∫ 1

0

∂

∂ξ
y(t, si, w(i, λ)) dλ · (xsi

− y(si, si−1, xsi−1)), (8.10)

where w(i, λ) = (1− λ)y(si, si−1, xsi−1) + λxsi .

Proof: Consider the sequence zi = y(t, si, xsi), i = 0, 1, ..., n. Then z0 = yt and we can write

xt−yt = (xt−zn)+
n∑

i=1

(zi−zi−1) = (xt−y(t, sn, xsn))+
n∑

i=1

(y(t, si, xsi
)−y(t, si−1, xsi−1)). (8.11)

Now for 1 ≤ s ≤ s′ ≤ t we have y(t, s, x) = y(t, s′, y(s′, s, x)). Setting s = si−1, s
′ = si, x = xsi−1

the i-th term of the right hand side of (8.11) thus becomes

y(t, si, xsi)− y(t, si, y(si, si−1, xsi−1)) =
∫ 1

0

∂

∂ξ
y(t, si, w(i, λ)) dλ · (xsi − y(si, si−1, xsi−1))

with w(i, λ) = (1−λ)y(si, si−1, xsi−1)+λxsi for 0 ≤ λ ≤ 1. Note that w(i, λ) ∈ D′
0 for i = 1, ..., n

since D′
0 is convex and thus y(t, si, w(i, λ)) is well-defined, and the lemma follows.

Let G = (G(y)) be defined in an open set D ⊂ IRp and consider the ordinary differential
equation

ẏt =
1
t
G(yt), ys = ξ, s ≥ 1. (8.12)

We will have conditions that ensure that the above ODE has a unique solution in some finite or
infinite interval, which we denote by y(t, s, ξ). We assume the validity of the following condition,
which is weaker than Conditions 3.3 and 3.4.

Condition 8.3 G has continuous partial derivatives up to second order for y ∈ D. There exists
compact sets D0 ⊂ D′

0 ⊂ D such that for all ξ ∈ D0, t ≥ s ≥ 1 we have y(t, s, ξ) ∈ D′
0 and

‖yξ(t, s, ξ)‖ ≤ C0(s/t)α (8.13)

with some C0 ≥ 1, α > 0. Let ||∂iG(y)/∂yi|| ≤ L for y ∈ D′
0 and i = 0, 1, 2.

We prove that the stability expressed by the condition above is in a sense inherited by the second
order derivatives of y(t, s, ξ).

Lemma 8.8 Let G satisfy Condition 8.3. Then for all ξ ∈ D0, t ≥ s ≥ 1

‖yξξ(t, s, ξ)‖ ≤ Lα−1C3
0 · (s/t)α,

‖ysξ(t, s, ξ)‖ ≤ (Lα−1 + 1)LC3
0 ·

1
s
(s/t)α.

Remark. From the proof below it follows that if G is three-times continuously differentiable then
with some constant C ′0 we have ‖yξξξ(t, s, ξ)‖ ≤ C ′0(s/t)α.

Proof: Use a change of time-scale t = ev, s = eu and consider the differential equation

d

dv
zv = G(zv), zu = ξ, u ≥ 0,

with its solution being denoted by z(v, u, ξ), v ≥ u ≥ 0. Then (8.13) implies

‖zξ(v, u, ξ)‖ ≤ C0e
−α(u−v), (8.14)

and the propositions of the lemma is equivalent to, after substitution u = log t and v = log s,

‖zξξ(v, u, ξ)‖ ≤ Lα−1C3
0 · e−α(v−u),

‖zuξ(v, u, ξ)‖ ≤ (Lα−1 + 1)LC3
0 · e−α(v−u).
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Now we have
∂

∂v
zξ(v, u, ξ) = Gy(z(v, u, ξ)) · zξ(v, u, ξ), zξ(u, u, ξ) = I. (8.15)

It is easy to see that zξξ(v, u, ξ) exists and is continuous in (v, u, ξ). From (8.15) get

∂

∂v
zξξ(v, u, ξ) = Gyy(z(v, u, ξ)) · zξ(v, u, ξ)zξ(v, u, ξ) + +Gy(z(v, u, ξ)) · zξξ(v, u, ξ), (8.16)

with zξξ(u, u, ξ) = 0. Since the operator norm of the first term is majorized by LC2
0e−2α(u−v)

and since the time varying linear differential equation with transition matrix Gy(z(v, u, ξ)) is
exponentially stable due to (8.14), we get the first claim of the lemma from the identity

∫ t

0

e−α(v−r)e−2αrdr = e−αv

∫ v

0

e−αrdr < α−1e−αv.

To estimate the mixed derivatives, take into account zu(v, u, ξ) = −zξ(v, u, ξ) ·G(ξ) to get

zuξ(v, u, ξ) = −zξξ(v, u, ξ) ·G(ξ)− zξ(v, u, ξ) ·Gξ(ξ),

from which the second claim follows using (8.14) and the proven first part of the lemma.
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