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Abstract. We consider a multi-asset discrete-time model of a financial market

with proportional transaction costs and efficient friction and prove necessary and
sufficient conditions for the absence of arbitrage. Our main result is an exten-
sion of the Dalang—Morton—-Willinger theorem. As an application, we establish

a hedging theorem giving a description of the set of initial endowments which

allows to super-replicate a given contingent claim.
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1 Introduction

The famous result, sometimes referred to as the First Fundamental Theorem on
Asset (or Arbitrage) Pricing (FTAP) asserts that a frictionless financial market
is arbitrage-free if and only if the price process is a martingale under a proba-
bility measure equivalent to the objective one. The original formulation due to
Harrison and Pliska [6] involves the assumption that the underlying probability
space (2,.7 ,P) (in other words, the number of states of the nature) is finite;

it has been removed in the subsequent study of Dalang et al. [2]. Surprisingly,
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the passage from finite to infinit® is not a simple exercise: instead of purely
geometric considerations (which make the Harrison—Pliska theorem so attractive
for elementary courses in financial economics) much more delicate topological
or measure-theoretical arguments must be used. These mathematical aspects at-
tracted attention of a number of authors and new nontrivial equivalences were
added (see, e.g., [22], [19], [12], [18], [7]). Now the no-arbitrage criteria in the
absence of friction are well-understood and simple proofs are available, [15], as
well as deep extensions to the continuous-time setting, [4], [5], [9]. The aim of
this paper is to present no-arbitrage criteria for a multi-asset multi-period model
with proportional transaction costs complementing the results of the note [14]
where the case of finit€? was treated and theorems, reducing to the classical
Harrison—Pliska theorem were established, see updated versions in [11]. We use
the geometric formalism developed in [10], [3], and [13]. In these papers it was
shown that the concept of equivalent martingale measures, so useful in the con-
text of frictionless market models, has to be changed for a concept of “dual”
variables, which are, in the case of frictionless market, unnormalized martingale
densities.

Slightly abusing the terminology of [15], we may formulate our main con-
clusion, Theorem 1, as follows:

In the presence of efficient friction, a financial market does not admit weak
arbitrage opportunities at any date if and only if there exists a dual martingale
process evolving in the interior of the positive dual to the solvency cone.

Although the literature on models with transaction costs is rapidly growing,
there are only a few papers dealing with necessary and sufficient conditions for
the absence of arbitrage. The article [8] contains an interesting approach which
is different from ours not only at the level of modeling (continuous-time setting
with the bid and ask prices) but also in the formulation of the no-arbitrage criteria.
An attempt to find an arbitrage pricing theorem (for the binomial model) can be
found in the preprint [20].

Addressing here the readers who are interested also in mathematical struc
tures, we adopt, in contrast to [14], an abstract formulation, which makes clear
that the basic model is a particular case of a linear regulator with random coeffi-
cients and specific conic constraints. No-arbitrage conditions can be formulated
as certain properties of the attainability set of the corresponding linear system.

We end this paper by a section devoted to hedging theorems giving “dual”
descriptions of the initial wealth which allows the investor to hedge successfully
contingent claims without any risk, just by super-replication. Mathematically, the
key issue here is the closedness of the set of subgains and this is one of the reasons
why no-arbitrage criteria are considered as important results. The principal result
of the paper implies an improvement of the hedging theorem [3]: the existence
of the equivalent martingale measure, i.e. the no-arbitrage condition without
friction is replaced by a certain no-arbitrage property involving transaction costs.
Unfortunately, we pay for this progress: at the moment, we can guarantee the
sufficiency of this property only assuming the efficient friction (therefore, our
theorem does not imply that of Dalang—Morton—Willinger).
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Remarks on notations. We shall work in a framework wherefX.7 ,P) is a
complete probability space equipped with a finite discrete-time filtration.7%),
t =0,1,....T; the o-algebras7 are assumed to be completed. For a process
X = (%) we defineX_ = (X_1), AX = X; — X;_1 with suitable conventions
for X_;. Clearly, every procesX can be restored by its initial value and the
increment process.

If w— N(w) C RY is a set-valued mapping, théfQ(N,.%) will denote the
set of all.Z-measurable selectors df (we shall omit.ZF in notations of this
kind). In particylar,LO(Rd) is the space of random vectorsAlfis a set of random
variables therA is the closure with respect to the convergence in probability (or
a.s.).

2 Portfolio processes under friction

We consider a financial market withtraded securities (e.g., currencies) with the
prices given by arR%-valued adapted process with strictly positive compo-
nents. As in [14], we do not assume that the reference asset is a traded security.
By convention,S ; = &.

The agent’s positions at time can be described either by a vecldr of
“physical units”, or by a vecto¥, of values invested in each position. These two
vectors are related in the obvious way: =V/S',i = 1,...,d.

The market friction is given by an adapted procelsgof transaction costs
coefficients) with values in the s&t¢ of matrices with non-negative entries and
zero diagonal.

A “comprehensive” description of the portfolio dynamics (in values) can be
done in terms of the increments as follows:

AV =V  AS +AB!, i=1,..d t=01.T, 1)
whereV', =o',

d d
AB =) AL =) @+A)AL, )
j=1 j=1

AL > 0 is an.Z-measurable random variable representing the net value trans-
ferred to the position from the positionj. In other words, the incrememV,’

of the value invested into thieth position consists of two parts: the increment
Vi ,AS' due to the price changes and the incremei due to the agent's
action at timet. A consecutive choice of matrice$L; with non-negative entries
(depending on the history up to the timeforms the agent’s strategy.

The dimension of the action space can be radically reduced. To this end, we
rewrite the portfolio dynamics in a way which makes clear that it is given by a
very simple linear controlled finite difference equation with controls satisfying
conic constraints. For each t we consider inR? the set
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d
M (w) = {x : Ja e MY such thaxd =3 (1 + N (w)al —al], i < d}
=1

which is a polyhedral cone as the image of the polyhedral ddfeunder a
linear mapping; it has, at most,x (d — 1) generators. Its dual positive cone has
the following representation:

M (@) = {w e RY: w! — 1+ N (@)w' <0, 1<i,j <d}.

Introducing the procesg with
AY, S‘ —AS, Yi=1,

we represent the portfolio dynamics as a linear controlled system
AV =V JAY) +AB!, i=1..,d, (3)

whereB belongs to 7, the set of processes withB; € L°(—M,,.%),t =0,.... T
(by convention,B_; = 0). We leave to the reader to check (using measurable
selection arguments) that this system generates the same set of value processes
as given by (1), i.e. to verify that anyAB; € L°(—M;,.%) can be obtained via
(2) with someAL, € L°(M¢,.7%).
We denote byZ© the set of all proces¥ = VB with initial value V_; = 0)
and increments given by (3) wheBeruns through#?. PutR, := {\, : V € Z}.
The setR; describes the “results” or “gains” which can be obtained at the date
t starting from the zero initial endowment. We introduce also the set

Ac=R —LURS,.7)
of “hedgeable claims” or “subgains”.
It is useful to make a look at the corresponding objects in terms of “physical”

units of assets.
Define the diagonal operators

(W) s (<L, x%) = (x1/Stw), ..., x? /S (W)

preserving the conid. We may write that; = ¢tVy and use in the sequel the
abbrewauonsl\/lt gtht, At oA, etc.

Notice thatAVt ABt (this formula is obvious from the financial point of
view but its formal check is also simple). That\’s= B where

AB, = AB; € L%(—M;,. 7).

Thus, we have a bijection between the sets of proce\sésesd\7.

Surely, the evolution of the proce‘s?sis much simpler: it is given by a relation
which is not an equation. Of course, there is nothing new here: the expression
Vi =gV, is just the well-known formula for the solution of non-homogeneous
linear difference equation (written for (3) in this strange cryptic form).
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As it was shown in [14] and [11], for models with market friction the concept
of arbitrage admits various natural generalizations. The solvency region plays
here an important role.

Let K, := RY+M, andF; := K, N (—K,). The setK,(w) are polyhedral cones
(hence closed)r¢(w) are linear spaces. Clearly, the cokgw) is the solvency
region (in values), being formed by vectors which can be transformed in a vector
with only non-negative components by a certain transform, i.e. by adding a vector
from —M(w), while F¢(w) represents positions which can be converted into zero
and vice versa (necessarily, these two transactions are free of charge).

We shall say that a strated¥ is a weak arbitrage opportunity at timet if
VtB € K; a.s. bUtP(Vt € K \ Ft) > 0.

The absence of weak arbitrage opportunities &réct no-arbitrage property)
at datet can be expressed in geometric terms:

NA?. R NLOK:,.%) C LO(F¢,.%).
It is an easy exercise to check that the above inclusion can be replaced by
the following equivalent one:

At N LO(KU‘%) g I—O(FUZ)

Without any difficulty one can formulate tH¢A; condition using the sets of
gains (or “subgains”) and the solvency regions in “physical” units.

For the case of finite?2 the references [14] and [11] give criteria fdAS as
well as for the weaker property

NAY. Rr N L°(Kr,.77) C L%0Kr,. 7).

These criteria coincide with the Harrison—Pliska theoremt # 0. The ques-
tion, whether the assumption th@tis finite can be omitted in their formulations,
remains open. In the present paper we report some progress, and provide, for
an arbitrary (2, necessary and sufficient conditions of the absence of weak ar-
bitrage opportunities along the whole time intervlllAG does not implyNA?
fort < T, see an example in [14]). We shall work assuming the condition of
efficient friction formulated as follows:

EF. The cone;(w) are proper, i.eFi(w) = {0} for every (,1).
Equivalently, one can say that evelfy'(w) has the non-empty interior.

The economic interpretation of weak arbitrage opportunities is obvious for
the case where al\l > 0,i #j (and, henceEF holds). If someone has an
access to a market with smaller transaction costs, such an agent can transform a
nonzero position irK to a positive gain.

UnderEF the property of interest is

NAS, R NLO%K;,.%) = {0} fort =0,1,..., T.

It is easy to check (e.g., by examinig® and M,*) that the conditionEF
implies thatK; = M.

Our main result is

Theorem 1 Assumethat EF holds. Then the following conditions are equivalent:
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(@) NAS;

(b) A NLOK;,.7%) = {0} for all t < T;

() ANLOK;,.74) = {0} and A, = A for all t < T;

(d) ANLK:,.%) ={0} forall t < T;

(e) there exists a bounded martingale Z such that Zs € LO(int (Rs)*,.%), s<T;

(f) for everyt < T there exists a bounded martingale Z' = (Z{)s<; such that
Z! € L%((Ks)*,.7), s < t, and Z! € LO(int (K;)*,.7).

Proof Without loss of generality we may assume tBathenceY)) is identically

equal tol := (1, ...,1). To see this, notice that one can repl&gey R = R

in the condition &) of the theorem. On the other hand, the Rtsre generated

by the controlled process&s with dynamics given by (3) wher¥ is constant.
But for the caseY = 1 the claim follows easily from the Theorem 3 on

separation of random polyhedral cones given in the next section. O

Notice that the components of martingaleséh &nd ) are strictly positive.

Remark The reader can easily add to this list a number of reformulations (e.g.,
expressingNAS in terms of units of assets).

3 Sums of closed convex cones

We start with the following simple observation. L&t = N; + N, whereN; are
closed convex cones iRY. If the coneK is proper, i.eK N (—K) = {0}, or if
only N;N(—Ny) = {0}, thenK is closed. Indeed, let +x] — x wherex" € N;.
If liminf |x{| < co then there is a subsequengesuch thalx{1k converge to some
X1 € Ni. Also xgk converge to soma, € N,. The relationx = x; + X, shows
thatx € K. The case liminfx{'| = co is impossible: the sequenad = x7'/|x]|
contains a subsequeng& converging to a certainy "€ N; with [%;| = 1. But
%1 = —%2, Wwherex; := lim xz* /|x%| is in Np, contradicting the assumption.
Combining these arguments with Lemma 1 below we establish Theorem 2
on closedness of sums of convex coned nplaying an important role in the
proof of no-arbitrage criteria.

Lemmal Let " € L°RY) be a sequence with 7, := liminf |n"| < oco. Then
there is an increasing sequence of N-valued random variables 7, such that the
sequence ™ converges (for almost all w).

Proof Let o(0) := 0 ando(k) := inf{n > ok — 1) : ||n"| — n| < 1/k}.
For the sequence"™= n°™ we will have sup|i"| < occ. In particular,n} :=
liminf nI" < co. Let

m(0):=0, m(k):=inf{n>nk -1): [F" —n} <1/k}, k>1.

In a similar way, working with the second component of the sequeng® ~
whose first component is convergent, we construct an increasing seqguéce
and so on. Obviously, the sequengge:= o o 11 o ... o 7¢(n) has the claimed
property. O
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Lemma 2 Assumethat N is a closed convex cone in L° stable under multiplica-
tion by the nonnegative random variables. If 7 is an N-valued random variable
and " e N, ne N, thené™ € N.

Proof The stability under multiplication ensures thgi -, € N. SinceN is
a closed cone, it contairs = "l f=ny. O

Let A := Y i, Ns whereNs are subsets of a vector spage
Lemma 3 Let Ns be convex cones. Introduce the following conditions:

(i) Arn(—N;) ={0} for everyt =0, ..., T;
(i) A_1nN(—N;) ={0} for everyt=1,...,T;
(iii) the relation Z;Oxs = 0 with Xs € Ng holds iff all xs = 0.

Then (i) = (ii) < (iii). If the cones Ns are proper, all conditions are equiv-
alent.

Proof

(i) = (ii) Trivial becauseA;_; C Ar.

(i) = (iii) Assume thaglzo Xs = 0 with Xs € Ng not all equal to zero. Let be
the largest index for whicl; # 0. The relationztsgol Xs = —X contradicts
to Ac_1 N (—Ny) = {0}.

(iii) = (ii) Obvious.

The implication {ii) = (i) when allNs are proper cones is also easy. ilf (
does not hold, therz;lyS = —z wherez # 0 is an element of somi; and
ys € Ns are not all equal to zero. If there yg # 0, s # t, the contradiction with
(iii) is clear. But the case where onjy # 0 is impossible because the coNg
is proper. O

Theorem 2 Let Ns be closed convex cones in LO(RY,.7) stable under muItipIi-
cation by the elements of L°(R+,7s) If A_1N(—=Ny) = {0} for everyt =1,...,T,
then Ar = Ar and hence Ar N LY(P) is closed in L1(P) for every P ~ P.

Proof We proceed by induction. Assume that the assertion holdsT fer 1.

In particular, the seg;l Ns is closed. Letz;ofg‘ — ¢ a.s. wherefl € Ns.
Introduce the sefl” := {liminf |¢]| < oo} and define the random variables
/M = €01 which are inNs. By Lemma 1 there is an increasing sequencélof

vaIued/o measurable random variables such that¢,™ converge tog) € No.
Then>L, &.™ converge a.s. to a random vanab;lee S+, Ns vanishing on
I'® and such thagl, = &, +¢.

It remains to prove thaflr = { a.s. Puth = (&2/1& D re (using the con-
vention 0 = 0). S|nce|§0| < 1, there is an increasing sequenceNbfalued
Jo-measurable random variableg such thatgon converge to somQO € No.
ThenzS 15;’" converge a.s. to a random varlakjleBy the induction hypothe5|s
(= Zs_l & whereés € Ns. Notice that¢ /|¢5| — 0 a.s. onl™®. Thus Zs—o &=0
where&s € Ns. By Lemma 3 allés = 0. Since|&y| = 1 onI"¢, we conclude that
P =0. O
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The following useful assertion is almost obvious:

Lemma 4 Let Z be an R%-valued martingale and let Xt := Z7 Y"1 & where
& € LO(RY,.7%) are such that Zs&s < 0. If the negative part of Xy is integrable
thenEXr <O0.

Proof. ForT = 0 this is obvious. Assume that the claim is trueTor 1. Clearly,

T-1

ZrY &> Xy —Zrér > -2y
s=0

By conditioning we get that

T-1

Zr 1) &> —E(Z7 |7 ).

s=0

Hence, by the induction hypothedisy 't 1 < 0. AsZt&r < 0, we get the result.
O

Lemma5 Let Ng be subsets of LO(RY,.7). Suppose that for eacht < T there
exists a RY-valued martingale Z! with the following properties:

1) Zl¢ < Oforevery € € Ng, s <'t;
2) the equality Z'¢ = 0 where ¢ € N, holds iff ¢ = 0.

Then Ai_1 N (—N;) = {0} for everyt =1 ..., T.

Proof If the assertion fails to be true, there aec Ns, s <'t, such that; #0
andY L) & = —&. Then

t—1

'y &=-Z'g >0
s=0
By the above lemma
t—1
EZ') & <0
s=0
It follows thatZ!¢&; = 0. In virtue of 2) this is possible only if; = 0. O

Lemma 6 Let Ns be closed convex cones in LO(RY,.7%) stable under multipli-
cation by the elements of LO(R.,.7). Assume that Ar N (—N;) = {0} for every
t=0,..,T.Thenforany ¢ € N,t < T, thereisa bounded R%-valued martingale
Z¢ such that:

1) z§¢ <O0forany & € N, s<T;
2) {2:¢ <0} ={¢ #0} (as).
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Proof PutA} :=ArnL!, Z1:={ncL>®RY,.7A): Ent <0, £ c AL}. With
anyn € Zr we associate the martingalg := E(r|. 7). It satisfies 1): otherwise
we would find¢ € Ns N L! such that the sef” := {Z¢ > 0} is of positive
probability and henc&n(&lr) = EZs(¢1) > O contradicting the definition of
Z1. Leta = supz, P(Z( < 0) > 0 (for a=0 there is nothing to prove).
There isn* = n*(¢) € L+ such that for the corresponding martinga@e we
havea = P(ng < 0). To see this, take, € Z1 with |||/ = 1 such that
P(Z"¢ < 0) — a and puty* := > 2 "p,.

Assume that the s@ := {¢ # 0}\ {Z ¢ < 0} is of positive probability. Foc
sufficiently large, the elementlpqyi¢j<c; ¢ is nonzero and, being inN;) N L,
it is not in the convex conét which is closed irL! in virtue of Theorem 2. By
the Hahn—Banach separation theorem there exigtd > (RY) such that

Ené < —Enlpniicj<qC V& € AL

It follows thatEné < 0 V¢ € Ap (i.e.n € Zr) andEynlpng¢j<c; < 0. Thus,
for Z corresponding to) "= n* + n we have

P(Z:¢ <0)>P(Z:¢ < 0)=a.
This contradiction shows that 2) holds. O

Corollary 1 In the setting of Lemma 6 for any countable set I C Us<1Ns there
is a bounded RY-valued martingale Z such that

1) Z£ <O0forany & € N, s<T,;
2) {Z¢( <0} ={C#0} (as)when ¢ € I' N N;.

The proof is standard: one can cho@eas an appropriate countable convex
combination ofZ¢, ¢ € I.

We say that a sequence of set-valued mappitgs (K;) is a # -valued
process if there is a countable sequence of adaRfedalued processeX" =
(X{") such that for every andw only a finite but non-zero number &"(w) is
different from zero and;(w) := cone{X"(w), n € N} (i.e. K{(w) is a polyhedral
cone generated by the finite s{"(w), n € N}).

Remark Using standard facts on measurable selection (see the book [1] for
references) one can show thétis a Z -valued process if and only if eadhy is
Z-measurable mapping taking values in the set of polyhedral cong§.in

Obviously, the sequence of solvency coles (K;) in our model of financial
market with friction is a%Z -valued process.

Now we summarize equivalent properties in the specific setting which is of
our primary interest.

Theorem 3 Let G be a Z -valued process such that all cones G¢(w) are proper.
Let A; = Ztszo Ns where Ns := —L%(Gs,.Z). Then the following conditions are
equivalent:
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@ An(—Ny)={0},t=0,..T;

(b) there exists a martingale Z such that Zs € L*>(intG},.7%) for each s < T;

(c) for eacht < T thereisamartingale Z' such that Z! € L>°(G¢,.7%) for each
s<tandZ! €L>(ntGy,.7%)

Proof The implication b) = (c) is trivial. The property &) (equivalent to the
properties in the formulation of Lemma 3) ensures (Theorem 2)Ahat Ar.
Notice that in our setting for eadhthere is a family;; € —N;, i € N, such that
the set{cl (w), i € N} is finite and generates the coBg(w) (a.s.). For the union
I' of these families we can find a bounded martingaleatisfying the conditions
of Corollary 1. This proves thatj = (b). The implication ¢) = (a) follows
from Lemmas 5 and 3. O

4 Hedging theorems

At first, we establish an “abstract” version of the hedging theorem giving a
description of the set of initial endowments starting from which the investor can
cover the future pay-off by the terminal wealth of a value process.

Omitting w, we shall denote by>+” the partial ordering generated Iyt
(le. x>y e x—yeGr).

Let ¥ be anRY-valued random variable (interpreted as a contingent claim in
units) such that? >t —c1 for some constant.

We consider the setting of the previous theorem and assume moreover that
the initial o-algebra is trivial.

Let £ (resp.,Z°) be the set of martingaled such thatzZs € L>(GZ,.7%)
(resp.,Zs € L>®(intG¢,.7%)) for eachs < T.

Let us consider the following convex setsRi:

Hy {fveRY: ¥euv+Ar},
Ha {v: EZ19 < Zgv, VZ € Z°).

Clearly, H, is always closed whileH; is closed simultaneously witlhy. As
we have shown, the latter is closed if therezis € Z°. Arguing with bounded
martingales of the form (2¢)Z +¢Z° and lettings decrease to zero, we conclude
that Z° in the definition ofH, can be replaced by if Z° % (.

Theorem 4 Assume that Z° # (). Then Hy = H,.

Proof Letwv € H;. This means that

T
19:“"'2537 & € _LO(GSV%)'
s=0

The inclusionH; C H, follows from Lemma 4 because f@& € Z° we have
T
Z7 ng > Zr9 — Zyv > —C|Z7| — Zrv.
s=0
and the right-hand side of the last inequality is an integrable random variable.
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Suppose that the converse inclusidp C H; fails. This means that there is
v € Hy such that the pointt — v does not belong to the convex closed Agt
We choose a probability measue~ P with the bounded densitfy := dP /dP
such thatd is in LY(RY, P). Thend — v can be separated frody N LY(RY, P),
i.e. there exists) € L>°(RY) such that

En@ —v) > En¢, V¢ e ArnLY(RY,P).

It follows that En(¥ — v) > 0 while En¢ < 0 for all ¢ € Ar NLY(RY,P). The
standard arguments show that= E(f n|.7%) is an element ofZ and we arrive
to a contradiction with the assumptienc H,. O

The above theorem applied with; = K gives directly the desired “dual”
description of the set of initial endowments

Hi={veR%: 3V e 7 such that + Vi >1 ¥}

expressed in terms of units of traded currencies needed to hedge (i.e. super-
replicate) a contingent also expressed in terms of units.

Now we explain the relation with the previously available result in [3] where
the problem was formulated in terms of values, i.e. the components of a contin-
gent claimC are liabilities in correspondent currencies measured in the reference
asset. This contingent claim in terms of units will e ¢7C.

The set of hedging endowments in values is defined in [3] as follows:

I'={veRY: 3V € Z such that +Vy =1 C}

where “-1" is the partial ordering generated . Clearly, I" = ¢; *H;. Theo-
rem 3 implies as a corollary

Theorem 5 Suppose that the hypotheses EF and NA*® hold. Then
r=bD:={veR%: EZtC <ZwVZ € Z}

where Z is the set of bounded martingales such that Z; € LOK,. %) for t =
o,..T.

Notice that the formulation of Theorem 4.2 in [3] uses, insteadZothe set
& of martingale<Z for which Zr is bounded and; € LO(K;*,.%) fort =0, ..., T.
To get such a description one needs only a minor modification of the separation
arguments.

Although the above theorem is established under the efficient friction condi-
tion, it has an advantage with respect to Theorem 4.2 in [3]EfiéV condition
is replaced by the weaker (and seemingly more relevant) conditish Notice
also thatNA® is weaker than the hypothesis in the two-asset hedging theorem of
[16].
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