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Abstract. We consider a multi-asset discrete-time model of a financial market
with proportional transaction costs and efficient friction and prove necessary and
sufficient conditions for the absence of arbitrage. Our main result is an exten-
sion of the Dalang–Morton–Willinger theorem. As an application, we establish
a hedging theorem giving a description of the set of initial endowments which
allows to super-replicate a given contingent claim.
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1 Introduction

The famous result, sometimes referred to as the First Fundamental Theorem on
Asset (or Arbitrage) Pricing (FTAP) asserts that a frictionless financial market
is arbitrage-free if and only if the price process is a martingale under a proba-
bility measure equivalent to the objective one. The original formulation due to
Harrison and Pliska [6] involves the assumption that the underlying probability
space (Ω, F , P ) (in other words, the number of states of the nature) is finite;
it has been removed in the subsequent study of Dalang et al. [2]. Surprisingly,
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the passage from finite to infiniteΩ is not a simple exercise: instead of purely
geometric considerations (which make the Harrison–Pliska theorem so attractive
for elementary courses in financial economics) much more delicate topological
or measure-theoretical arguments must be used. These mathematical aspects at-
tracted attention of a number of authors and new nontrivial equivalences were
added (see, e.g., [22], [19], [12], [18], [7]). Now the no-arbitrage criteria in the
absence of friction are well-understood and simple proofs are available, [15], as
well as deep extensions to the continuous-time setting, [4], [5], [9]. The aim of
this paper is to present no-arbitrage criteria for a multi-asset multi-period model
with proportional transaction costs complementing the results of the note [14]
where the case of finiteΩ was treated and theorems, reducing to the classical
Harrison–Pliska theorem were established, see updated versions in [11]. We use
the geometric formalism developed in [10], [3], and [13]. In these papers it was
shown that the concept of equivalent martingale measures, so useful in the con-
text of frictionless market models, has to be changed for a concept of “dual”
variables, which are, in the case of frictionless market, unnormalized martingale
densities.

Slightly abusing the terminology of [15], we may formulate our main con-
clusion, Theorem 1, as follows:

In the presence of efficient friction, a financial market does not admit weak
arbitrage opportunities at any date if and only if there exists a dual martingale
process evolving in the interior of the positive dual to the solvency cone.

Although the literature on models with transaction costs is rapidly growing,
there are only a few papers dealing with necessary and sufficient conditions for
the absence of arbitrage. The article [8] contains an interesting approach which
is different from ours not only at the level of modeling (continuous-time setting
with the bid and ask prices) but also in the formulation of the no-arbitrage criteria.
An attempt to find an arbitrage pricing theorem (for the binomial model) can be
found in the preprint [20].

Addressing here the readers who are interested also in mathematical struc-
tures, we adopt, in contrast to [14], an abstract formulation, which makes clear
that the basic model is a particular case of a linear regulator with random coeffi-
cients and specific conic constraints. No-arbitrage conditions can be formulated
as certain properties of the attainability set of the corresponding linear system.

We end this paper by a section devoted to hedging theorems giving “dual”
descriptions of the initial wealth which allows the investor to hedge successfully
contingent claims without any risk, just by super-replication. Mathematically, the
key issue here is the closedness of the set of subgains and this is one of the reasons
why no-arbitrage criteria are considered as important results. The principal result
of the paper implies an improvement of the hedging theorem [3]: the existence
of the equivalent martingale measure, i.e. the no-arbitrage condition without
friction is replaced by a certain no-arbitrage property involving transaction costs.
Unfortunately, we pay for this progress: at the moment, we can guarantee the
sufficiency of this property only assuming the efficient friction (therefore, our
theorem does not imply that of Dalang–Morton–Willinger).
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Remarks on notations. We shall work in a framework where (Ω, F , P ) is a
complete probability space equipped with a finite discrete-time filtrationF = (Ft ),
t = 0, 1, ..., T ; the σ-algebrasFt are assumed to be completed. For a process
X = (Xt ) we defineX− := (Xt−1), ∆Xt := Xt − Xt−1 with suitable conventions
for X−1. Clearly, every processX can be restored by its initial value and the
increment process.

If ω �→ N (ω) ⊆ Rd is a set-valued mapping, thenL0(N , Ft ) will denote the
set of all Ft -measurable selectors ofN (we shall omitFT in notations of this
kind). In particular,L0(Rd ) is the space of random vectors. IfA is a set of random
variables then̄A is the closure with respect to the convergence in probability (or
a.s.).

2 Portfolio processes under friction

We consider a financial market withd traded securities (e.g., currencies) with the
prices given by anRd -valued adapted processS with strictly positive compo-
nents. As in [14], we do not assume that the reference asset is a traded security.
By convention,S−1 = S0.

The agent’s positions at timet can be described either by a vectorV̂t of
“physical units”, or by a vectorVt of values invested in each position. These two
vectors are related in the obvious way:V i

t = V̂ i
t S i

t , i = 1, ..., d .
The market friction is given by an adapted processΛ (of transaction costs

coefficients) with values in the setMd
+ of matrices with non-negative entries and

zero diagonal.
A “comprehensive” description of the portfolio dynamics (in values) can be

done in terms of the increments as follows:

∆V i
t = V̂ i

t−1∆S i
t + ∆Bi

t , i = 1, ..., d , t = 0, 1, ..., T , (1)

whereV i
−1 = vi ,

∆Bi
t :=

d∑
j=1

∆Lji
t −

d∑
j=1

(1 +λij
t )∆Lij

t , (2)

∆Lji
t ≥ 0 is anFt -measurable random variable representing the net value trans-

ferred to the positioni from the positionj . In other words, the increment∆V i
t

of the value invested into thei -th position consists of two parts: the increment
V̂ i

t−1∆S i
t due to the price changes and the increment∆Bi

t due to the agent’s
action at timet . A consecutive choice of matrices∆Lt with non-negative entries
(depending on the history up to the timet) forms the agent’s strategy.

The dimension of the action space can be radically reduced. To this end, we
rewrite the portfolio dynamics in a way which makes clear that it is given by a
very simple linear controlled finite difference equation with controls satisfying
conic constraints. For eachω, t we consider inRd the set
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Mt (ω) :=
{

x : ∃ a ∈ Md
+ such thatx i =

d∑
j=1

[(1 + λij
t (ω))aij − aji ], i ≤ d

}

which is a polyhedral cone as the image of the polyhedral coneMd
+ under a

linear mapping; it has, at most,d × (d −1) generators. Its dual positive cone has
the following representation:

M ∗
t (ω) = {w ∈ Rd : wj − (1 +λij

t (ω))wi ≤ 0, 1 ≤ i , j ≤ d}.

Introducing the processY with

∆Y i
t =

1
S i

t−1

∆S i
t , Y i

0 = 1,

we represent the portfolio dynamics as a linear controlled system

∆V i
t = V i

t−1∆Y i
t + ∆Bi

t , i = 1, ..., d , (3)

whereB belongs toB , the set of processes with∆Bt ∈ L0(−Mt , Ft ), t = 0, ..., T
(by convention,B−1 = 0). We leave to the reader to check (using measurable
selection arguments) that this system generates the same set of value processes
as given by (1), i.e. to verify that any∆Bt ∈ L0(−Mt , Ft ) can be obtained via
(2) with some∆Lt ∈ L0(Md

+, Ft ).
We denote byV 0 the set of all processV = V B with initial value (V−1 = 0)

and increments given by (3) whereB runs throughB . PutRt := {Vt : V ∈ V 0}.
The setRt describes the “results” or “gains” which can be obtained at the date
t starting from the zero initial endowment. We introduce also the set

At := Rt − L0(Rd
+, Ft )

of “hedgeable claims” or “subgains”.

It is useful to make a look at the corresponding objects in terms of “physical”
units of assets.

Define the diagonal operators

φt (ω) : (x1, ..., x d ) �→ (x1/S 1
t (ω), ..., x d/S d

t (ω))

preserving the coneRd
+. We may write that̂Vt = φt Vt and use in the sequel the

abbreviationsM̂t = φt Mt , Ât = φt At , etc.
Notice that∆V̂t = ∆̂Bt (this formula is obvious from the financial point of

view but its formal check is also simple). That iŝV = B̃ where

∆B̃t = ∆̂Bt ∈ L0(−M̂t , Ft ).

Thus, we have a bijection between the sets of processesV and V̂ .
Surely, the evolution of the procesŝV is much simpler: it is given by a relation

which is not an equation. Of course, there is nothing new here: the expression
V i

t = S i
t V̂ i

t is just the well-known formula for the solution of non-homogeneous
linear difference equation (written for (3) in this strange cryptic form).
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As it was shown in [14] and [11], for models with market friction the concept
of arbitrage admits various natural generalizations. The solvency region plays
here an important role.

Let Kt := Rd
+ + Mt andFt := Kt ∩ (−Kt ). The setsKt (ω) are polyhedral cones

(hence closed),Ft (ω) are linear spaces. Clearly, the coneKt (ω) is the solvency
region (in values), being formed by vectors which can be transformed in a vector
with only non-negative components by a certain transform, i.e. by adding a vector
from −Mt (ω), while Ft (ω) represents positions which can be converted into zero
and vice versa (necessarily, these two transactions are free of charge).

We shall say that a strategyB is a weak arbitrage opportunity at timet if
V B

t ∈ Kt a.s. butP (Vt ∈ Kt \ Ft ) > 0.
The absence of weak arbitrage opportunities (i.e.strict no-arbitrage property)

at datet can be expressed in geometric terms:

NAs
t . Rt ∩ L0(Kt , Ft ) ⊆ L0(Ft , Ft ).

It is an easy exercise to check that the above inclusion can be replaced by
the following equivalent one:

At ∩ L0(Kt , Ft ) ⊆ L0(Ft , Ft ).

Without any difficulty one can formulate theNAs
t condition using the sets of

gains (or “subgains”) and the solvency regions in “physical” units.
For the case of finiteΩ the references [14] and [11] give criteria forNAs

T as
well as for the weaker property

NAw
T . RT ∩ L0(KT , FT ) ⊆ L0(∂KT , FT ).

These criteria coincide with the Harrison–Pliska theorem ifΛ = 0. The ques-
tion, whether the assumption thatΩ is finite can be omitted in their formulations,
remains open. In the present paper we report some progress, and provide, for
an arbitraryΩ, necessary and sufficient conditions of the absence of weak ar-
bitrage opportunities along the whole time interval (NAs

T does not implyNAs
t

for t < T , see an example in [14]). We shall work assuming the condition of
efficient friction formulated as follows:

EF. The conesKt (ω) are proper, i.e.Ft (ω) = {0} for every (ω, t).

Equivalently, one can say that everyK ∗
t (ω) has the non-empty interior.

The economic interpretation of weak arbitrage opportunities is obvious for
the case where allλij > 0, i /= j (and, hence,EF holds). If someone has an
access to a market with smaller transaction costs, such an agent can transform a
nonzero position inK to a positive gain.

UnderEF the property of interest is

NAs. Rt ∩ L0(Kt , Ft ) = {0} for t = 0, 1, ..., T .

It is easy to check (e.g., by examiningK ∗
t and M ∗

t ) that the conditionEF
implies thatKt = Mt .

Our main result is

Theorem 1 Assume that EF holds. Then the following conditions are equivalent:
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(a) NAs;
(b) At ∩ L0(Kt , Ft ) = {0} for all t ≤ T ;
(c) At ∩ L0(Kt , Ft ) = {0} and At = Āt for all t ≤ T ;
(d) Āt ∩ L0(Kt , Ft ) = {0} for all t ≤ T ;
(e) there exists a bounded martingale Z such that Zs ∈ L0(int (K̂s )∗, Fs ), s ≤ T ;
(f) for every t ≤ T there exists a bounded martingale Z t = (Z t

s )s≤t such that
Z t

s ∈ L0((K̂s )∗, Fs ), s ≤ t , and Z t
t ∈ L0(int (K̂t )∗, Ft ).

Proof Without loss of generality we may assume thatS (henceY ) is identically
equal to1 := (1, ..., 1). To see this, notice that one can replaceRt by R̂t = φt Rt

in the condition (a) of the theorem. On the other hand, the setsR̂t are generated
by the controlled processeŝV with dynamics given by (3) whereY is constant.

But for the caseY = 1 the claim follows easily from the Theorem 3 on
separation of random polyhedral cones given in the next section. ��

Notice that the components of martingales in (e) and (f ) are strictly positive.

Remark The reader can easily add to this list a number of reformulations (e.g.,
expressingNAs in terms of units of assets).

3 Sums of closed convex cones

We start with the following simple observation. LetK = N1 + N2 whereNi are
closed convex cones inRd . If the coneK is proper, i.e.K ∩ (−K ) = {0}, or if
only N1∩ (−N2) = {0}, thenK is closed. Indeed, letx n

1 +x n
2 → x wherex n

i ∈ Ni .
If lim inf |x n

1 | < ∞ then there is a subsequencenk such thatx nk
1 converge to some

x1 ∈ N1. Also x nk
2 converge to somex2 ∈ N2. The relationx = x1 + x2 shows

that x ∈ K . The case lim inf|x n
1 | = ∞ is impossible: the sequence ˜x n

1 := x n
1 /|x n

1 |
contains a subsequencex nk

1 converging to a certain ˜x1 ∈ N1 with |x̃1| = 1. But
x̃1 = −x̃2, where ˜x2 := lim x nk

2 /|x nk
1 | is in N2, contradicting the assumption.

Combining these arguments with Lemma 1 below we establish Theorem 2
on closedness of sums of convex cones inL0 playing an important role in the
proof of no-arbitrage criteria.

Lemma 1 Let ηn ∈ L0(Rd ) be a sequence with η∗ := lim inf |ηn | < ∞. Then
there is an increasing sequence of N-valued random variables τn such that the
sequence ητn converges (for almost all ω).

Proof Let σ(0) := 0 andσ(k ) := inf{n > σ(k − 1) : ||ηn | − η∗| ≤ 1/k}.
For the sequence ˜ηn := ησ(n) we will have supn |η̃n | < ∞. In particular,η1

∗ :=
lim inf η1n < ∞. Let

τ1(0) := 0, τ1(k ) := inf{n > τ1(k − 1) : |η̃1n − η1
∗| ≤ 1/k}, k ≥ 1.

In a similar way, working with the second component of the sequence ˜ητ1(n)

whose first component is convergent, we construct an increasing sequenceτ2(k )
and so on. Obviously, the sequenceτn := σ ◦ τ1 ◦ ... ◦ τd (n) has the claimed
property. ��
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Lemma 2 Assume that N is a closed convex cone in L0 stable under multiplica-
tion by the nonnegative random variables. If τ is an N-valued random variable
and ξn ∈ N , n ∈ N, then ξτ ∈ N .

Proof The stability under multiplication ensures thatξn I{τ=n} ∈ N . SinceN is
a closed cone, it containsξτ =

∑
ξn I{τ=n}. ��

Let At :=
∑t

s=0 Ns whereNs are subsets of a vector spaceE .

Lemma 3 Let Ns be convex cones. Introduce the following conditions:

(i) AT ∩ (−Nt ) = {0} for every t = 0, ..., T ;
(ii) At−1 ∩ (−Nt ) = {0} for every t = 1, ..., T ;
(iii) the relation

∑T
s=0 xs = 0 with xs ∈ Ns holds iff all xs = 0.

Then (i ) ⇒ (ii ) ⇔ (iii ). If the cones Ns are proper, all conditions are equiv-
alent.

Proof

(i) ⇒ (ii ) Trivial becauseAt−1 ⊆ AT .
(ii) ⇒ (iii ) Assume that

∑T
s=0 xs = 0 with xs ∈ Ns not all equal to zero. Lett be

the largest index for whichxt /= 0. The relation
∑t−1

s=0 xs = −xt contradicts
to At−1 ∩ (−Nt ) = {0}.

(iii) ⇒ (ii ) Obvious.

The implication (iii ) ⇒ (i ) when allNs are proper cones is also easy. If (i )
does not hold, then

∑T
s=1 ys = −zt wherezt /= 0 is an element of someNt and

ys ∈ Ns are not all equal to zero. If there isys /= 0, s /= t , the contradiction with
(iii ) is clear. But the case where onlyyt /= 0 is impossible because the coneNt

is proper. ��
Theorem 2 Let Ns be closed convex cones in L0(Rd , Fs ) stable under multipli-
cation by the elements of L0(R+, Fs ). If At−1 ∩ (−Nt ) = {0} for every t = 1, ..., T ,
then AT = ĀT and hence AT ∩ L1(P̃ ) is closed in L1(P̃ ) for every P̃ ∼ P.

Proof We proceed by induction. Assume that the assertion holds forT − 1.
In particular, the set

∑T
s=1 Ns is closed. Let

∑T
s=0 ξn

s → ξ a.s. whereξn
s ∈ Ns .

Introduce the setΓ := {lim inf |ξn
0 | < ∞} and define the random variables

ξ′
s

n = ξn
s IΓ which are inNs . By Lemma 1 there is an increasing sequence ofN-

valuedF0-measurable random variablesτn such thatξ′
0
τn converge toξ′

0 ∈ N0.
Then

∑T
s=1 ξ′

s
τn converge a.s. to a random variableζ ∈ ∑T

s=1 Ns vanishing on
Γ c and such thatξIΓ = ξ′

0 + ζ.
It remains to prove thatξIΓ = ξ a.s. Putξ̃n

s := (ξn
s /|ξn

0 |)IΓ c (using the con-
vention 0/0 = 0). Since|ξ̃n

0 | ≤ 1, there is an increasing sequence ofN-valued
F0-measurable random variablesσn such thatξ̃σn

0 converge to somẽξ0 ∈ N0.
Then

∑T
s=1 ξ̃σn

s converge a.s. to a random variableζ̃. By the induction hypothesis
ζ̃ =

∑T
s=1 ξ̃s whereξ̃s ∈ Ns . Notice thatξ/|ξn

0 | → 0 a.s. onΓ c . Thus,
∑T

s=0 ξ̃s = 0
where ξ̃s ∈ Ns . By Lemma 3 allξ̃s = 0. Since|ξ̃0| = 1 on Γ c , we conclude that
P (Γ c) = 0. ��
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The following useful assertion is almost obvious:

Lemma 4 Let Z be an Rd -valued martingale and let ΣT := ZT
∑T

s=0 ξs where
ξs ∈ L0(Rd , Fs ) are such that Zsξs ≤ 0. If the negative part of ΣT is integrable
then EΣT ≤ 0.

Proof. For T = 0 this is obvious. Assume that the claim is true forT −1. Clearly,

ZT

T−1∑
s=0

ξs ≥ −Σ−
T − ZT ξT ≥ −Σ−

T .

By conditioning we get that

ZT−1

T−1∑
s=0

ξs ≥ −E (Σ−
T |FT−1).

Hence, by the induction hypothesisEΣT−1 ≤ 0. As ZT ξT ≤ 0, we get the result.
��

Lemma 5 Let Ns be subsets of L0(Rd , Fs ). Suppose that for each t ≤ T there
exists a Rd -valued martingale Z t with the following properties:

1) Z t
s ξ ≤ 0 for every ξ ∈ Ns , s ≤ t ;

2) the equality Z t
t ξ = 0 where ξ ∈ Nt holds iff ξ = 0.

Then At−1 ∩ (−Nt ) = {0} for every t = 1, ..., T .

Proof If the assertion fails to be true, there areξs ∈ Ns , s ≤ t , such thatξt /= 0
and

∑t−1
s=0 ξs = −ξt . Then

Z t
t

t−1∑
s=0

ξs = −Z t
t ξt ≥ 0.

By the above lemma

EZ t
t

t−1∑
s=0

ξs ≤ 0.

It follows that Z t
t ξt = 0. In virtue of 2) this is possible only ifξt = 0. ��

Lemma 6 Let Ns be closed convex cones in L0(Rd , Fs ) stable under multipli-
cation by the elements of L0(R+, Fs ). Assume that AT ∩ (−Nt ) = {0} for every
t = 0, ..., T . Then for any ζ ∈ Nt , t ≤ T , there is a bounded Rd -valued martingale
Z ζ such that:

1) Z ζ
s ξ ≤ 0 for any ξ ∈ Ns , s ≤ T ;

2) {Z ζ
t ζ < 0} = {ζ /= 0} (a.s.).
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Proof Put A1
T := AT ∩ L1, ZT := {η ∈ L∞(Rd , FT ) : Eηξ ≤ 0, ξ ∈ A1

T }. With
anyη ∈ ZT we associate the martingaleZs := E (η|Fs ). It satisfies 1): otherwise
we would find ξ ∈ Ns ∩ L1 such that the setΓ := {Zsξ > 0} is of positive
probability and henceEη(ξIΓ ) = EZs (ξIΓ ) > 0 contradicting the definition of
ZT . Let a := supη∈ZT

P (Ztζ < 0) > 0 (for a=0 there is nothing to prove).
There isη∗ = η∗(ζ) ∈ ZT such that for the corresponding martingaleZ ζ we
havea = P (Z ζ

t ζ < 0). To see this, takeηn ∈ ZT with ||ηn ||∞ = 1 such that
P (Z n

t ζ < 0) → a and putη∗ :=
∑

2−nηn .
Assume that the setD := {ζ /= 0}\{Z ζ

t ζ < 0} is of positive probability. Forc
sufficiently large, the element−ID∩{|ζ|≤c}ζ is nonzero and, being in (−Nt ) ∩ L1,
it is not in the convex coneA1

T which is closed inL1 in virtue of Theorem 2. By
the Hahn–Banach separation theorem there existsη ∈ L∞(Rd ) such that

Eηξ < −EηID∩{|ζ|≤c}ζ ∀ ξ ∈ A1
T .

It follows that Eηξ ≤ 0 ∀ ξ ∈ A1
T (i.e. η ∈ ZT ) and EηID∩{|ζ|≤c} < 0. Thus,

for Z̃ corresponding to ˜η := η∗ + η we have

P (Z̃tζ < 0) > P (Z ζ
t ζ < 0) = a.

This contradiction shows that 2) holds. ��
Corollary 1 In the setting of Lemma 6 for any countable set Γ ⊆ ∪s≤T Ns there
is a bounded Rd -valued martingale Z such that

1) Zsξ ≤ 0 for any ξ ∈ Ns , s ≤ T ;
2) {Ztζ < 0} = {ζ /= 0} (a.s.) when ζ ∈ Γ ∩ Nt .

The proof is standard: one can chooseZ as an appropriate countable convex
combination ofZ ζ , ζ ∈ Γ .

We say that a sequence of set-valued mappingsK = (Kt ) is a C -valued
process if there is a countable sequence of adaptedRd -valued processesX n =
(X n

t ) such that for everyt andω only a finite but non-zero number ofX n
t (ω) is

different from zero andKt (ω) := cone{X n
t (ω), n ∈ N} (i.e. Kt (ω) is a polyhedral

cone generated by the finite set{X n
t (ω), n ∈ N}).

Remark Using standard facts on measurable selection (see the book [1] for
references) one can show thatK is aC -valued process if and only if eachKt is
Ft -measurable mapping taking values in the set of polyhedral cones inRd .

Obviously, the sequence of solvency conesK = (Kt ) in our model of financial
market with friction is aC -valued process.

Now we summarize equivalent properties in the specific setting which is of
our primary interest.

Theorem 3 Let G be a C -valued process such that all cones Gs (ω) are proper.
Let At :=

∑t
s=0 Ns where Ns := −L0(Gs , Fs ). Then the following conditions are

equivalent:
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(a) At ∩ (−Nt ) = {0}, t = 0, ..., T ;
(b) there exists a martingale Z such that Zs ∈ L∞(int G∗

s , Fs ) for each s ≤ T ;
(c) for each t ≤ T there is a martingale Z t such that Z t

s ∈ L∞(G∗
s , Fs ) for each

s ≤ t and Z t
t ∈ L∞(int G∗

s , Fs )

Proof The implication (b) ⇒ (c) is trivial. The property (a) (equivalent to the
properties in the formulation of Lemma 3) ensures (Theorem 2) thatAT = ĀT .
Notice that in our setting for eacht there is a familyζ i

t ∈ −Nt , i ∈ N, such that
the set{ζ i

t (ω), i ∈ N} is finite and generates the coneGt (ω) (a.s.). For the union
Γ of these families we can find a bounded martingaleZ satisfying the conditions
of Corollary 1. This proves that (a) ⇒ (b). The implication (c) ⇒ (a) follows
from Lemmas 5 and 3. ��

4 Hedging theorems

At first, we establish an “abstract” version of the hedging theorem giving a
description of the set of initial endowments starting from which the investor can
cover the future pay-off by the terminal wealth of a value process.

Omitting ω, we shall denote by “≥T ” the partial ordering generated byGT

(i.e. x ≥T y ⇔ x − y ∈ GT ).
Let ϑ be anRd -valued random variable (interpreted as a contingent claim in

units) such thatϑ ≥T −c1 for some constantc.
We consider the setting of the previous theorem and assume moreover that

the initial σ-algebra is trivial.
Let Z (resp.,Z0) be the set of martingalesZ such thatZs ∈ L∞(G∗

s , Fs )
(resp.,Zs ∈ L∞(int G∗

s , Fs )) for eachs ≤ T .
Let us consider the following convex sets inRd :

H1 := {v ∈ Rd : ϑ ∈ v + AT },

H2 := {v : EZT ϑ ≤ Z0v, ∀Z ∈ Z0}.

Clearly, H2 is always closed whileH1 is closed simultaneously withAT . As
we have shown, the latter is closed if there isZ o ∈ Z0. Arguing with bounded
martingales of the form (1−ε)Z +εZ o and lettingε decrease to zero, we conclude
that Z0 in the definition ofH2 can be replaced byZ if Z0 /= ∅.

Theorem 4 Assume that Z0 /= ∅. Then H1 = H2.

Proof Let v ∈ H1. This means that

ϑ = v +
T∑

s=0

ξs , ξs ∈ −L0(Gs , Fs ).

The inclusionH1 ⊆ H2 follows from Lemma 4 because forZ ∈ Z0 we have

ZT

T∑
s=0

ξs ≥ ZT ϑ − ZT v ≥ −c|ZT | − ZT v.

and the right-hand side of the last inequality is an integrable random variable.
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Suppose that the converse inclusionH2 ⊆ H1 fails. This means that there is
v ∈ H2 such that the pointϑ − v does not belong to the convex closed setAT .
We choose a probability measureP̃ ∼ P with the bounded densityf := dP̃/dP
such thatϑ is in L1(Rd , P̃ ). Thenϑ − v can be separated fromAT ∩ L1(Rd , P̃ ),
i.e. there existsη ∈ L∞(Rd ) such that

Ẽη(ϑ − v) > Ẽηζ, ∀ζ ∈ AT ∩ L1(Rd , P̃ ).

It follows that Ẽη(ϑ − v) > 0 while Ẽηζ ≤ 0 for all ζ ∈ AT ∩ L1(Rd , P̃ ). The
standard arguments show thatZt = E (f η|Ft ) is an element ofZ and we arrive
to a contradiction with the assumptionv ∈ H2. ��

The above theorem applied withGt = K̂t gives directly the desired “dual”
description of the set of initial endowments

H1 = {v ∈ Rd : ∃ V ∈ V such thatv + V̂T ≥T ϑ}

expressed in terms of units of traded currencies needed to hedge (i.e. super-
replicate) a contingentϑ also expressed in terms of units.

Now we explain the relation with the previously available result in [3] where
the problem was formulated in terms of values, i.e. the components of a contin-
gent claimC are liabilities in correspondent currencies measured in the reference
asset. This contingent claim in terms of units will beϑ = φT C .

The set of hedging endowments in values is defined in [3] as follows:

Γ := {v ∈ Rd : ∃ V ∈ V such thatv + VT �T C}

where “�T ” is the partial ordering generated byKT . Clearly,Γ = φ−1
t H1. Theo-

rem 3 implies as a corollary

Theorem 5 Suppose that the hypotheses EF and NAs hold. Then

Γ = D := {v ∈ Rd : EẐT C ≤ Ẑ0v ∀ Z ∈ Z}

where Z is the set of bounded martingales such that Ẑt ∈ L0(K ∗
t , Ft ) for t =

0, ..., T .

Notice that the formulation of Theorem 4.2 in [3] uses, instead ofZ the set
D of martingalesZ for which ẐT is bounded and̂Zt ∈ L0(K ∗

t , Ft ) for t = 0, ..., T .
To get such a description one needs only a minor modification of the separation
arguments.

Although the above theorem is established under the efficient friction condi-
tion, it has an advantage with respect to Theorem 4.2 in [3]: theEMM condition
is replaced by the weaker (and seemingly more relevant) conditionNAs . Notice
also thatNAs is weaker than the hypothesis in the two-asset hedging theorem of
[16].



382 Y. Kabanov et al.

References

1. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions (Lect. Notes Math.,
580) Springer: Berlin Heidelberg New York 1977

2. Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in
stochastic securities market model. Stochast Stochast Reports29, 185–201 (1990)

3. Delbaen, F., Kabanov, Yu.M., Valkeila, E.: Hedging under transaction costs in currency markets:
a discrete-time model. Math. Finance11, 1 (2002)

4. Delbaen,F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing.
Math. Annalen300, 463–520 (1994)

5. Delbaen, F., Schachermayer, W.: The Fundamental Theorem of Asset Pricing for unbounded
stochastic processes. Math. Annalen312, 215–250 (1998)

6. Harrison, M., Pliska, S.: Martingales and stochastic integrals in the theory of continuous trading.
Stochast. Processes Applications11, 215–260 (1981)

7. Jacod, J., Shiryaev, A.N.: Local martingales and the fundamental asset pricing theorem in the
discrete-time case. Finance Stochast.2(3), 259–273 (1998)

8. Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J.
Econ. Theory66, 178–197 (1995)

9. Kabanov, Yu.M.: On the FTAP of Kreps–Delbaen–Schachermayer. Statistics and Control of
Random Processes. The Liptser Festschrift. Proceedings of Steklov Mathematical Institute Sem-
inar, World Scientific 1997, pp. 191–203

10. Kabanov, Yu.M.: Hedging and liquidation under transaction costs in currency markets. Finance
Stochast.3(2), 237–248 (1999)

11. Kabanov, Yu.M.: The arbitrage theory. In: Handbooks in Mathematical Finance: Topics in Option
Pricing, Interest Rates and Risk Management. Cambridge University Press, 2001

12. Kabanov, Yu.M., Kramkov, D.O.: No-arbitrage and equivalent martingale measure: a new proof
of the Harrison-Pliska theorem. Probab. Theory its Appl.39(3), 523–527 (1994)

13. Kabanov, Yu.M., Last, G.: Hedging under transaction costs in currency markets: a continuous-
time model. Math. Finance11, 1 (2002)

14. Kabanov, Yu.M., Stricker, Ch.: The Harrison–Pliska arbitrage pricing theorem under transaction
costs. J. Math. Econ.35(2), 185–196 (2001)

15. Kabanov, Yu.M., Stricker Ch.: A teachers’ note on no-arbitrage criteria. Séminaire de Probabilités
XXXV (Lect. Notes Math.,1755), pp. 149-152, Springer: Berlin Heidelberg New York 2001

16. Koehl, P.-F., Pham, H., Touzi, N.: On super-replication in discrete time under transaction costs.
Preprint

17. Pshenychnyi, B.N.: Convex Analysis and Extremal Problems. Moscow: Nauka 1980 (in Russian)
18. Rogers, L.C.G.: Equivalent martingale measures and no-arbitrage. Stochast. Stochast. Reports

51, 41–51 (1994)
19. Schachermayer, W.: A Hilbert space proof of the fundamental theorem of asset pricing in finite

discrete time. Insurance: Math. Econ.11, 1–9 (1992)
20. Shirakawa, H., Konno, H.: Pricing of options under the proportional transaction costs. Preprint,

1995
21. Shiryaev, A.N.: Essentials of Stochastic Finance. World Scientific, 1999
22. Stricker, Ch.: Arbitrage et lois de martingale. Annales de l’Institut Henri Poincaré. Probab.
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