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Abstract
We show that in a discrete-time large financial market the absence

of certain asymptotic arbitrage opportunities is equivalent to the ex-
istence of martingale measures in a strong sense. We also consider the
Arbitrage Pricing Model with stable random variables where we are
able to give explicit necessary and sufficient conditions using market
parameters.
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1 Introduction

The Arbitrage Pricing Model (APM) was first proposed by S. A. Ross.
In [21] he considered a multifactor model with infinitely many assets. In the
simplest one-factor case his main result asserts, roughly speaking, that the
absence of certain asymptotic arbitrage opportunities implies that the asset
returns are approximately linear functions of the correlation with the market
portfolio; see [11, 13] for transparent expositions; see also section 3 of the
present paper.

Investigations of [10, 1] shed light on the intimate relationship between no-
arbitrage conditions and the existence of martingale measures in the frame-
work of security markets in discrete time with finitely many assets. Later
these questions were treated at increasing levels of generality in models with
a continuous time parameter, see [24, 3, 4, 5, 12]. New “no free lunch” condi-
tions have been introduced. All these developments relied on various versions
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and generalizations of the separation theorems of [26, 19], as does the present
article.

Generalizing ideas of [21, 11], large financial markets were introduced in
[14] as sequences of economies with an increasing (finite) number of assets.
General results have been developed in a succession of papers: [17, 18, 15, 16].

In these articles various formulations of asymptotic arbitrage are consid-
ered. They are found to be equivalent to certain contiguity properties of
sequences of martingale measures for the finite economies. As results are
formulated for very general types of models, a restricted class of strategies is
used: only those portfolios are admissible whose returns are (almost surely)
uniformly bounded from below by a constant. Though in continuous-time
models this restriction is a mathematical necessity (so as to rule out “dou-
bling strategies”), it is not justified in discrete-time models.

The first main motivation of our research was the fact that in empirical
studies asset returns are often modelled by random variables which are not
bounded either from below or from above (see the models of section 3), and
in this case the set of admissible strategies may reduce to the 0 portfolio.
This means that the no-arbitrage criteria of the above mentioned papers are
somewhat vacant when applied to such models since they are automatically
satisfied. As an easy example, let us consider a market with a sequence
of assets whose returns are independent Gaussian variables such that their
expectation tends to infinity while their variance converges to 0. Intuitively,
such a market contains enormous arbitrage opportunities, but none of the
criteria of e.g. [15, 16] detects this, due to the fact that the chosen class of
admissible strategies contains only 0 in the present case.

In an economy with finitely many assets equivalent martingale measures
play a significant rôle: they give rise to positive linear pricing rules for con-
tingent claims. Our second source of motivation was that we wondered under
what kind of conditions we can obtain such measures for a discrete-time large
financial market. In continuous-time markets this issue has been first treated
by [16] for non-stationary models (i.e. where the finite asset economies may
live on different probability spaces); [2] gave conditions for building martin-
gale measures on stationary markets (i.e. where the finite asset economies
are embedded in each other, see the definition in section 2) with a certain
factor structure.

We shall be working in a market model with countably many assets and
one time step, though everything carries over to multistep models, see Re-
mark 2.2. The APM fits well into this framework. Trying to give a solution
to the two problems explained above, we formulate a no-arbitrage criterion
which uses the unrestricted set of portfolios and which is a direct general-
ization of the usual no-arbitrage condition for discrete-time markets with
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finitely many assets, see Remark 2.8. This criterion distinguishes e.g. Gaus-
sian models as we shall illustrate in section 3. It will turn out to be equivalent
to the existence of martingale measures in a certain strong sense, hence we
get a (partial) answer to both of the questions explained above.

In section 2 we define the model we are working in, introduce the “no
asymptotic free lunch” (NAFL) property and present our main result. Sec-
tion 3 characterizes (NAFL) in the classical Arbitrage Pricing Model with
stable random variables. Proofs appear in section 4. A few possible ramifi-
cations are discussed in the concluding section.

2 Absence of arbitrage and martingale mea-

sures

We now define a large financial market as a sequence of economies with
an increasing number of assets. Our definition is only a very special case of
the one in [14]. We fix a probability space (Ω,F , P ); all random variables are
supposed to be defined on this space. The set of bounded random variables
is denoted by L∞.

Definition 2.1 By large financial market we mean a sequence of “small
markets” indexed by k ∈ N, where prices of assets are observed at times
0 and 1. The price of the ith asset in the kth market at time t ∈ {0, 1} is a
random variable

Si
k(t), 0 ≤ i ≤ k.

We suppose that Si
k(0) is a constant. For the sake of simplicity we assume

that each small market contains a riskless asset with constant price . For-
mally, we assume that there is a 0th asset and its price satisfies

S0
k(t) := 1, t ∈ {0, 1}, k ∈ N.

We specify a portfolio strategy φk on the k-th market by a sequence

φi
k, 1 ≤ i ≤ k

of real numbers which correspond to the investments in the respective assets
at time 0. The position φ0

k in the 0th asset is now determined by the self-
financing condition

k∑
i=0

φi
k = 0.

3



The return on the portfolio φk is then

V φk :=
k∑

i=0

φi
k(S

i
k(1)− Si

k(0)) =
k∑

i=1

φi
k(S

i
k(1)− Si

k(0)).

Remark 2.2 This setting may easily be generalized to multistep models with
trading times 0, . . . , T (k) ≥ 1. In this case we assume that there are given
filtrations (Fk

t )0≤t≤T (k) to which the process S is adapted. The set of portfolio
strategies consists of stochastic processes φi

k where

φi
k(t), 1 ≤ i ≤ k

are Ft−1-measurable, 1 ≤ t ≤ T (k). The return can now be defined as

V φk :=

T (k)∑
t=1

k∑
i=1

φi
k(t)(S

i
k(t)− Si

k(t− 1)).

We remark that in this more general situation our main result remains true
with hardly any modification in the proof: one has to introduce C as the set
of returns on bounded portfolios and the proof of Theorem 2.7 goes through
almost identically.

We restrict ourselves to the one-step model so as to keep the presentation
simple.

Our main result deals with a subclass of models in which the (k + 1)th
market is an enlargement of the kth, i.e. the small markets are embedded in
each other. This motivates the following definition.

Definition 2.3 We call the market stationary if

Si
k+1 = Si

k, 1 ≤ i ≤ k.

In this case we have a sequence of assets, so we can simplify the notation
and write only

Si, i ∈ N.

During the proof we will work with the set of possible returns:

C := {V φk : φk is a portfolio in the kth market, k ∈ N}. (1)

Before continuing, we fix some notation: F denotes the set of R+ ∪{∞}-
valued random variables, L∞ is the set of (almost surely) bounded random
variables. Now we define our asymptotic no-arbitrage condition.
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Definition 2.4 A discrete-time market has no asymptotic free lunch (NAFL)
if there exists no sequence of trading strategies (φk)k∈N such that

V φk
k→∞−−−→ V in probability, V ∈ F \ {0}.

In [16] the same term was used to denote a concept of absence of asymp-
totic arbitrage in a continuous-time semimartingale context. It had essen-
tially the same content as the “no free lunch” (NFL) of e.g. [19]. As we deal
with discrete-time models only we chose to call our condition in the same
way as [16] despite the conceptual difference and referred to the one in [16]
as (NFL).

The above concept is related to that of “no free lunch with bounded risk”
(NFLBR), used in [3, 4, 23]. This latter condition states the non-existence of
a sequence of returns uniformly bounded from below and converging in prob-
ability to some element of F \{0}. The economic interpretation is straightfor-
ward: one can not have arbitrage in the limit with short-selling constraints.
Compare also to (NAFLBR) in [16].

As indicated in the introduction, we wish to work with returns which
are unbounded from below, hence the concept (NFLBR) had to be suitably
adjusted. So let us investigate what (NAFL) means in economic terms. A
sequence V φk as in the above definition is not necessarily uniformly bounded
from below. However, a subsequence (still denoted by k) converges almost
surely to V , so the lower envelope

u := ∧k∈NV φk

is almost surely finite. Agents populating the economy under consideration
may have different beliefs and assessements of the market situation, corre-
sponding to various subjective probabilities P ′. We suppose, however, that
they agree on zero-probability events, i.e. P ′ ∼ P . An agent may have a
subjective probability P ′ ∼ P which assigns very small weight to the set
{u < −1}, hence for such a person pursuing the trading strategy (φk)k∈N
may seem to be an appealing free lunch opportunity, as the possible loss is
bounded by 1 with a probability very close to 1. This idea is related to the
concept of quantile hedging, see [8]: in real market situations one often tries
to super-replicate the desired claim with a certain probability only.

Roughly speaking, (NAFL) means that whatever the agents’ assessments
of the market situation might be (as long as they correspond to equivalent
measures), one can not have any way of making something out of nothing
with more or less “acceptable” risk.
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Remark 2.5 It is quite easy to check that (NAFL) implies the “no free
lunch” (NFL) condition often encountered, e.g. in [19, 23, 12, 16]. The cri-
teria (NFL) often furnishes martingale measures or related objects. Results
of [16] imply that in a market with countably many assets such that each Si is
(locally) bounded (NFL) is equivalent to the existence of an equivalent mar-
tingale measure. There are certain drawbacks of (NFL) to be mentioned: it
involves generalized sequences (nets), which are counter-intuitive and whose
convergence seems to be difficult to verify in concrete models. These facts
led to the creation of “sequential” asymptotic no-arbitrage conditions such as
(NFLVR), (NFLBR), etc.; see [4, 15]. It is shown in [16], however, that these
concepts are not strong enough to provide an equivalent martingale measure.
(NAFL) is one possible strengthening of all these criteria, using (ordinary)
sequences only.

We now introduce two fundamental notions concerning equivalent mar-
tingale measures.

Definition 2.6 If there is Q ∼ P such that

EQSi(1) = Si(0), i ∈ N, (2)

we say that there exists an equivalent martingale measure. We abbreviate
this condition as (EMM). Indeed, (2) states precisely that (Si(t))t∈{0,1} is a
Q-martingale, i ∈ N. We say that there exist equivalent martingale measures
in the strong sense (abbreviated (EMMSS)), if for all P ′ ∼ P there is Q ∼ P ′

with dQ/dP ′ ∈ L∞ and (2) holds.

This can be interpreted in the following way: whatever the subjective
probability P ′ ∼ P of the respective agent may be, there is a risk-neutral
measure Q ∼ P ′ with bounded P ′-density (such measures are sometimes
called uniform martingale measures, see [7]).

Although (EMMSS) seems to be a rather technical condition, it is a
straightforward generalization of the concept of equivalent martingale mea-
sure in the context of discrete-time markets with finitely many assets and
finite time horizon; this will be pointed out in Remark 2.8. We have the
following characterization, the main theorem of the paper.

Theorem 2.7 In a stationary market (NAFL) is equivalent to (EMMSS).

Remark 2.8 The reader might have the impression that (NAFL) is too
strong a requirement. Are there any non-trivial models satisfying it? From
the above result we can immediately construct a simple example. Let us con-
sider the stationary model with finitely many assets (say, Sl = SN , l ≥ N
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for a certain N). We recall from [1] the no-arbitrage (NA) condition: if for
any portfolio φ

V φ ≥ 0 a.s. =⇒ V φ = 0 a.s.,

then we say that (NA) holds. It is shown in [1] that (NA) is necessary and
sufficient for the existence of an equivalent martingale measure. In fact, this
measure can be chosen such that it has bounded P -density. As (NA) is not
sensitive to an equivalent change of measure, we may conclude that in a model
with finitely many assets (NA) is equivalent to (EMMSS), hence to (NAFL).

Example 2.9 We give an easy example of an infinite market with (EMMSS).
Let us suppose that in a stationary large financial market the increments
Si(1)− Si(0) are independent and symmetric. As convolutions of symmetric
variables are themselves symmetric, we get that if for a sequence of portfolios
φk we have

V φk
k→∞−−−→ V ∈ F,

in probability, then the negative parts (V φk)− tend to 0 in distribution, hence
the positive parts (V φk)+, too, and we obtain V = 0: the model enjoys the
(NAFL) property.

Example 2.10 It is possible that (EMM) holds while (EMMSS) fails. To
see this, we take Ω = [0, 1[, F = B([0, 1[), P the Lebesgue measure. We
define a stationary large financial market by

Si(0) := 1, Si(1)− Si(0) := ∆i, i ≥ 1,

where for k ≥ 0 and 2k ≤ i < 2k+1 we set

∆i(t) := −1, t ∈
[
2i− 2k+1

2k+1
,
2i + 1− 2k+1

2k+1

[
,

∆i(t) := 1, t ∈
[
2i + 1− 2k+1

2k+1
,
2i + 2− 2k+1

2k+1

[
,

∆i(t) = 0 otherwise.

The reader can easily check that if Q is a martingale measure for all the
market, i.e.

EQ∆i = 0, i ≥ 1,

then the Q-measure of dyadic intervals of the form

Ik
l :=

[
l

2k
,
l + 1

2k

[
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is equal for 0 ≤ l < 2k, for each fixed k ≥ 0. To put it another way,
Q(Ik

l ) = P (Ik
l )! A measure on F is determined by its values on dyadic

intervals. As Q equals P on these we conclude that necessarily Q = P .
Now let us take any P ′ ∼ P with dP/dP ′ unbounded. Looking at the

market under P ′, we conclude that (EMM) holds true (P is a martingale
measure) but there is no martingale measure Q with dQ/dP ′ ∈ L∞. Thus
we have found a model in which (EMM) holds while (EMMSS) fails. This
example was suggested by Christophe Stricker.

3 APM with stable random variables

Now we present a class of infinite models in which we can characterize
the (NAFL) property in terms of market parameters. We use a multifactor
non-stationary version of the “revisited” APM in [15].

Definition 3.1 We define for all k ≥ m the kth small market of the m-
factor Arbitrage Pricing Model as

S0
k(0) = S0

k(1) ≡ 1,

Si
k(1) = Si

k(0)(1 + µi
k + κ̄i

kε
i
k), 1 ≤ i ≤ m,

Si
k(1) = Si

k(0)(1 + µi
k +

m∑
j=1

κi
k(j)ε

j
k + κ̄i

kε
i
k), m < i ≤ k.

Here the µi
k are real numbers which can be interpreted as “expected

return”, the ε1
k, . . . , ε

m
k are the “random sources” driving the first m assets

(which can be our focus assets or certain market indices); εi
k, m + 1 ≤

i ≤ k represents the randomness of Si
k which is its own, the “idiosyncratic

risk”. From now on we suppose that the variables εi
k, m + 1 ≤ i ≤ k are

independent for fixed k for all k ≥ m and that they are also independent
from the family εi

k, 1 ≤ i ≤ m. We also assume κ̄i
k 6= 0, k ≥ m, i ≤ k.

The parameter κi
k(j) represents a certain “correlation” between market

factor j and asset i in the kth small market. This is not to be taken in the
formal sense as we do not suppose that the variables εi

k are square-integrable!
It is convenient to introduce a reparametrization.

S0
k(0) = S0

k(1) ≡ 1,

Si
k(1) = Si

k(0)(1 + κ̄i
k(ε

i
k − bi

k)), 1 ≤ i ≤ m,

Si
k(1) = Si

k(0)(1 +
m∑

j=1

κi
k(j)(ε

j
k − bj

k) + κ̄i
k(ε

i
k − bi

k)), m < i ≤ k,
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where

bi
k = −µi

k

κ̄i
k

, 1 ≤ i ≤ m, bi
k = −µi

k

κ̄i
k

+
m∑

j=1

µj
kκ

i
k(j)

κ̄j
kκ̄

i
k

, m < i ≤ k.

In the stationary case we drop double indices and write εi, κi(j), κ̄i, Si, bi

only. The APM fits well into the more general framework of large financial
markets presented in the preceeding section.

In what follows we fix 1 ≤ α ≤ 2 and suppose that εi
k, m < i ≤ k

have standard symmetric α-stable distribution. That is, their characteristic
function is given by

φ(t) = e−|t|
α

, (3)

see [25] for a comprehensive treatment of these variables. The cases α = 1, 2
correspond to the Cauchy and Gaussian distributions, respectively. What we
are using is the following property: if X1, X2 are independent with distribu-
tion given by (3), then for σ1, σ2 ∈ R

σ1X1 + σ2X2 ' α
√
|σ1|α + |σ2|αX1,

here ' denotes equality in distribution. We know from [25] that the distri-
bution of such variables is continuous and its support is the whole real line.
In the sequel we will also need the conjugate number α′ of α defined by

1

α
+

1

α′
= 1.

Theorem 3.2 If α > 1 then (NAFL) implies that

sup
k≥m

k∑
j=1

|bj
k|α

′
< ∞. (4)

In the case α = 1
sup

k≥m, j≤k
|bj

k| < ∞. (5)

If the model is stationary and the mth small market satisfies the (NA) con-
dition of Remark 2.8, we even have

(EMMSS) ⇐⇒ (NAFL) ⇐⇒
∞∑
i=1

|bi|α′ < ∞.

for α > 1 and

(EMMSS) ⇐⇒ (NAFL) ⇐⇒ sup
i∈N

|bi| < ∞

for α = 1.
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Remark 3.3 The assumption (NA) is quite natural: if it fails, we can create
arbitrage already in the mth market. From the proof it will be clear that if

• either ε1
k, . . . , ε

m
k are standard symmetric α-stable;

• or S0
k , . . . , S

m
k are the same variables for each k and (NA) holds in the

market with these m + 1 assets,
then (4) (resp. (5)) is also a sufficient condition for (NAFL), even in the
non-stationary case. Finally, in the proof of sufficiency it is possible to drop
the assumption that the factors are traded assets. It is also possible to extend
the results for α < 1. We only indicate these generalizations so as not to
make the presentation complicated.

Corollary 3.4 If α > 1 and there exists a constant C such that

|κ̄i| ≤ C, i ∈ N,

then in the stationary model (NAFL) implies that there exists γj, 1 ≤ j ≤ m
satisfying

∞∑
i=m+1

∣∣∣∣∣µi −
m∑

j=1

γjκi(j)

∣∣∣∣∣

α′

< ∞. (6)

Inequality (6) expresses that the expected return on asset k lies asymp-
totically close to a certain linear combination of the κk(j), 1 ≤ j ≤ m as k
tends to infinity; i.e. returns are “almost” linear functions of the “correla-
tions” with the market factors.

In [9] a similar model was considered. The authors used a different con-
cept of asymptotic arbitrage which depended on α. They found that condi-
tion (6) is necessary for the absence of “α-arbitrage”. In the case α = 2 (6)
is identical to the condition given in [21].

4 Technicalities

We fix our probability space (Ω,F , P ) and we denote by L0 the set of R-
valued random variables on it, L0

+ is the set of non-negative random variables.
As usual, we identify two random variables if they are equal almost surely.
We equip L0 with the (metrizable) topology of convergence in probability.
For any P̃ ∼ P we will denote by L1(P̃ ) the Banach space of P̃ -integrable
functions, equipped with the usual norm topology.

We start with a useful sequential compactness result. If H is a subset
of a vector space, conv(H) denotes the set of vectors which are finite convex
combinations of elements of H.
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Proposition 4.1 Let fn be a sequence in L0 bounded from below by a random
variable. Then there are f ′n ∈ conv({fk, k ≥ n}) which converge almost surely
to some f with values in R ∪ {∞}.

Proof. This is trivial from Lemma A1.1 of [4]. 2

Now we define an abstract analogue of the condition (NAFL). Let K ⊂ L0

be a convex cone.

Definition 4.2 We say that K has property (P), if there exists no sequence
hn ∈ K with hn → h in probability, h ∈ F \ {0}.

If we take K := C where C is defined by (1), we clearly have that K
has (P) iff our stationary large financial market has (NAFL). The following
lemma forms the main ingredient of the proof of Theorem 2.7. Notice that
we do not use the specific market structure, only property (P) of K.

Lemma 4.3 If K has property (P) then K̄ − L0
+ is closed in probability.

Here K̄ is the closure of K in L0.

Proof. Let us suppose that

fn − rn
n→∞−−−→ u,

in probability, where fn ∈ K̄, rn ∈ L0
+. By the definition of the closure of a

set we may and will suppose that fn ∈ K. Obviously,

fn ≥ fn − rn ≥ ∧n∈N(fn − rn) > −∞

almost everywhere. By Proposition 4.1 we can take convex combinations f ′n
of the fn which converge to some f . We take the same convex combinations
of rn and denote them by r′n. As K,L0

+ are convex cones, we still have
f ′n ∈ K, r′n ∈ L0

+. Let us define

V := {ω ∈ Ω|f(ω) = ∞}.

We show that P (V ) is 0. Let us suppose that this is not true. Then we may
find a subsequence nk such that

P (V ∩ {f ′nk
> k2}) > P (V )(1− 1

k
).

Then the sequence

gk :=
f ′nk

k
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satisfies gk ∈ K and

gk
k→∞−−−→∞ on V, gk

k→∞−−−→ 0 on Ω \ V,

in probability. As K has property (P), this is a contradiction. Now we may
conclude that f ∈ K̄, r′n → r ∈ L0

+ and u = f − r, the Lemma is proved. 2

For the construction of martingale measures we will use a version of the
Kreps-Yan separation theorem (cf.[19, 26]).

Theorem 4.4 Let P̃ ∼ P and D ⊂ L1(P̃ ) a closed convex cone with

−L1
+(P̃ ) ⊂ D, D ∩ L1

+(P̃ ) = {0}.
Then there is an element p ∈ L∞ which is strictly positive and satisfies

∀h ∈ D Eph ≤ 0.

Proof. See e.g. [22]. 2

We also recall a useful result from p. 266 of [6].

Proposition 4.5 If H is a countable set of random variables on (Ω,F , P )
then there exists P̃ ∼ P with dP̃/dP ∈ L∞ such that each element of H is
P̃ -integrable.

Now we are in the position to prove the main result of this article.
Proof of Theorem 2.7. First we assume (NAFL). We notice that (NAFL) is
not sensible to an equivalent change of measure, so we may and will suppose
P = P ′. The cone C of (1) satisfies property (P), so by Lemma 4.3 C̄ − L0

+

is closed in probability. Clearly C̄ ∩ L0
+ = {0}. We take a measure P̃ ∼

P, dP̃ /dP ∈ L∞ which integrates all the Sk, k ∈ N, hence all the elements
of C. We apply Theorem 4.4 in L1(P̃ ) to the closed convex cone

D := (C̄ − L0
+) ∩ L1(P̃ ),

and obtain an element p ∈ L∞ which defines a measure Q ∼ P̃ by setting

dQ

dP̃
:=

p

Ep
.

As EQ ± (Sk(1)− Sk(0)) ≤ 0, k ∈ N, we get

EQ(Sk(1)− Sk(0)) = 0, k ∈ N,

i.e. Q is a martingale measure for this market.
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The other direction: if we have a sequence

dn
n→∞−−−→ d, dn ∈ C, n ∈ N,

violating (NAFL), we may suppose that the convergence is almost every-
where. We introduce P ′ ∼ P which integrates the lower envelope

∧n∈Ndn > −∞.

Taking a martingale measure Q for P ′ with dQ/dP ′ ∈ L∞ we get that

EQdn = 0, n ∈ N.

Using Fatou’s lemma we find that

EQd ≤ 0,

in contradiction with d ∈ F \ {0}.
Before proceeding to the proof of Theorem 3.2 we make a few useful

observations.

Proposition 4.6 Let Xn, n ∈ N be a sequence of identically distributed
(but not necessarily independent!) random variables such that their common
distribution is continuous and its support is the whole real line. Let σn be a
sequence of positive numbers, µn a sequence of real numbers. If

µn

σn

→∞, µn →∞, n →∞ (7)

then σnXn + µn →∞ in probability. If

sup
n∈N

∣∣∣∣
µn

σn

∣∣∣∣ < ∞ (8)

then either there is β > 0 such that P (σnXn + µn ≤ −1) ≥ β or

σnXn + µn → 0

almost surely along a suitable subsequence.

Proof. If (7) holds then

∀K > 0 P (σnXn + µn > K) = P (
σn

µn

Xn + 1 >
K

µn

) → P (1 > 0) = 1.
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If one has (8) then we distinguish two cases. If supn σn is finite then supn |µn|
is finite, too. Taking a subsequence we may suppose that the two sequences
converge to σ, µ respectively. If σ = 0 then µ = 0 and we are done. If not,
we have

P (σnXn + µn ≤ −1) → P (σX1 + µ ≤ −1) > 0

by the assumption on the distributions. If supn σn = ∞ then we take a
subsequence (still denoted by n) such that σn →∞ and µn/σn → c ∈ R. We
get

P (σnXn + µn ≤ −1) = P (Xn +
µn

σn

+
1

σn

≤ 0) → P (X1 ≤ −c) > 0.

2

We introduce the following notation: if Y ' σX +µ where X is standard
symmetric α-stable then we will write σ(Y ), µ(Y ) for σ, µ, respectively.
Proof of Theorem 3.2. (NAFL)⇔(EMMSS) follows from the main result in
section 2. We only have to concentrate on the other implications.

Necessity: We take `α, the Banach space of sequences (ln)n∈N satisfying

‖l‖α :=
∞∑

n=1

|ln|α < ∞.

We fix any element 0 6= l ∈ `α. We define the strategy φk on the kth market
for all k > m:

φi
k :=

sgn(lib
i
k)li

κ̄k
i

, m < i ≤ k;

φi
k :=

sgn(lib
i
k)li −

∑k
j=m+1 φj

kκ
j
k(i)

κ̄k
i

, 1 ≤ i ≤ m.

It is easy to see that in this case V φk is an α-stable variable. Direct
calculation gives its scale and shift parameter. We notice that

σ(V φk) → ‖l‖α 6= 0. (9)

(NAFL) holds, so by Proposition 4.6 we conclude that

sup
k>m

|µ(V φk)| = sup
k>m

k∑
i=1

|libi
k| < ∞. (10)

We may consider the sequences vk = vi
k, k > m defined by

vi
k = bi

k, 1 ≤ i ≤ k, vi
k = 0, i > k
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as elements of `α′ , the dual space of `α. We may interpret (10) as follows: the
sequence vk of continuous linear functionals on `α is pointwise bounded. So,
by the Banach-Steinhaus theorem it is bounded in norm, which is just (4).
If α = 1 then `α′ is the space of bounded sequences `∞ with the supremum
norm and we obtain (5).

Sufficiency in the stationary case: Let us suppose that there is a sequence
of portfolios φk, k > m such that

V φk → V ∈ F \ {0}. (11)

We cut V φk in two:

V φk = V k
1 + V k

2 :=
m∑

i=1

(
φi +

k∑
j=m+1

φjκj(i)

)
εi +

k∑
i=m+1

φiκ̄iεi.

Using the Hölder-inequality we get

∣∣∣∣
µ(V k

2 )

σ(V k
2 )

∣∣∣∣ =

∣∣∣∣∣∣
−∑m

i=1(φi +
∑k

j=m+1 φjκj(i))bi −
∑k

i=m+1 φiκ̄ibi

α

√∑m
i=1 |φi +

∑k
j=m+1 φjκj(i)|α +

∑k
i=m+1 |φiκ̄i|α

∣∣∣∣∣∣

≤ α′

√√√√
k∑

i=1

|bi|α′ ≤ ‖b‖α′ ,

for α > 1 and ∣∣∣∣
µ(V k

2 )

σ(V k
2 )

∣∣∣∣ ≤ ‖b‖∞,

for α = 1. We infer from Proposition 4.6 that

∀k P (V k
2 ≤ −1) ≥ β > 0, (12)

for some β or V k
2 → 0 almost surely (along a subsequence). The latter case

is easy to handle, so we suppose (12) and turn our attention to V k
1 . If there

is a θ > 0 such that
∀k P (V k

1 ≤ −θ) ≥ θ,

then we are done, as by independence

P ({V k
1 ≤ −θ, V k

2 ≤ −1}) ≥ θβ > 0,

for all k, a contradiction to (11). If this is not the case then the negative
part of a subsequence (still denoted by k) converges to 0 almost surely:

(V k
1 )− → 0.

15



Using the property (NA) and Remark 2.7 we may conclude that V k
1 converges

to 0 and (12) contradicts (11).
Proof of Corollary 3.4. Under the hypotheses we get that

∞∑
i=m+1

∣∣∣∣∣µi −
m∑

j=1

µj
κi(j)

κ̄i

∣∣∣∣∣

α′

< ∞,

so we can set γj := µj/κ̄j.

5 Conclusion

In this article we were dealing with certain problems of the arbitrage the-
ory of discrete-time large financial markets. We have shown that there is no
sequence of portfolios whose returns converge to a strictly positive (possi-
bly infinite) random variable in probability if and only if for each measure
P ′ ∼ P there is an equivalent martingale measure Q with bounded dQ/dP ′.
We suggested an economic interpretation of this criterion. In a certain class
of models we have given explicit characterizations in terms of market param-
eters.

One would naturally ask what is the right asymptotic no-arbitrage con-
cept which is equivalent to (EMM) (and does not create a whole lot of mar-
tingale measures like in (EMMSS)). It would also be desirable to characterize
whether the classical APM admits an equivalent martingale measure in the
case where the εi have arbitrary distributions. Results of [20] show that
(under certain conditions on the εi) this follows from the by now familiar
condition ∞∑

k=1

b2
k < ∞.
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