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Abstract

Risk-sensitive identification of AR-processes was first considered in [12]. The purpose
of this paper is to extend this original approach to ARMA-processes and even multi-
variable linear stochastic systems. We provide a new definition of a risk-sensitive iden-
tification criterion. For this we first consider a recursive identification procedure which
is parameterized by a weight-matrix K acting on the stochastic gradient. Using the
asymptotic theory of recursive estimation a suitably scaled version of the error process
will be approximated by a stationary Gaussian process, see Chapter 4.5, Part II of [1].
The new risk sensitive criterion will be defined in terms of this associated stationary
Gaussian process in a familiar manner via an exponential-quadratic cost. The main
result of the paper is the minimization of the proposed new criterion with respect to
the weight-matrix K over a feasible set EK where the cost function is known to be
finite, Theorem 6.1. This results will then be extended to the case when minimization
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over a feasible set E◦
K is considered, on the complement of which the cost function is

known to be infinite, Theorem 6.1. The starting point of our analysis is an expression
of the cost function given in LEQG-theory (see [5]), in particular a result of [10]. A new
expression for the cost function will be also given, using stochastic realization theory,
as the mutual information rate between two stochastic processes.
Keywords: ARMA processes; linear stochastic systems; recursive prediction error
identification; risk sensitive identification; Riccati equations; stochastic realization;
bounded-real lemma.

1 Risk-sensitive identification of ARMA processes

Risk-sensitive identification of Gaussian AR-processes was first considered in [12], see
pp. 297, Problem 3.2 of [12]. Let (yn), − ∞ < n < +∞ be a (strictly) stationary
Gaussian AR (p) process satisfying the difference equation

A∗y = e,

where A∗ is polynomials of the backward shift operator of degree p. We assume that
A∗ is stable and the leading coefficients of A∗ is equal to 1. The remaining coefficients
of A∗ are collected in a parameter vector θ∗. The noise process e = (en) is assumed to
be an independent, identically distributed Gaussian N (0, σ2) sequence. Let

Fn = Fy
n = σ{yi : 0 ≤ i ≤ n}

be the σ-algebra defined by the history of y between 0 and n. Then a special case of
Problem 3.2 of [12] can be stated as follows: for a fixed time horizon N find a sequence
of estimates θ̂n, n = 1, ..., N such that for each n the estimate θ̂n is Fn-measurable and
the criterion

E

(
exp

{
c

2

N∑

n=1

(θ − θ̂n)T (θ − θ̂n)
})

, (1.1)

with a positive c, is minimized. A solution to this problem is proposed in [12]. It is
stated that, under additional technical conditions, the optimal solution is given by a
recursion

θ̂n = θ̂n−1 − 1
n

Kn(yn − φT
nθ̂n−1), (1.2)

where Kn is a time-varying weighting matrix that can be computed by a forward
recursion, and φn = (−yn−1, ...,−yn−p)T .

The purpose of this paper is to extend these ideas by formulating a similar, but new
risk sensitive identification criterion, which is applicable to ARMA-processes and even
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to multi-variable linear stochastic systems. Consider a piecewise constant embedding
defined by

θ̂s = θ̂n for s ∈ [n, n + 1), n ≥ 1.

Introducing the normalized and re-scaled process

ψt = et/2(θ̂et − θ∗), t ≥ 0 (1.3)

and N = eT , the criterion given by (1.1) will become

E
(

exp{ c

2

∫ T

0
ψ(t)T ψ(t)dt}

)
. (1.4)

If θ̂n is defined by a recursive procedure of the form (1.2) with fixed K = Kn, then,
under appropriate technical conditions the asymptotic theory developed in Chapter
4.5, Part II of [1] is applicable, and we can approximate (ψt) by a stationary Gaussian-
process. This observation is the basis of extending the ideas of [12].

Let us now consider the case of ARMA systems. Let (yn), −∞ < n < +∞ be a
wide-sense stationary ARMA (p, q) process satisfying the difference equation

A∗y = C∗e,

where A∗ and C∗ are polynomials of the shift operator of degree p and q respectively.
We assume, that A∗, C∗ are stable, relative prime, and the leading coefficients of A∗

and C∗ are equal to 1. The remaining coefficients of A∗ and C∗ are collected in a
parameter vector θ∗. At this point it is sufficient to assume that the noise process
fulfills the following minimal conditions: there exists an increasing family of σ-algebras
(Fn) such that en is Fn-measurable and

E(en|Fn−1) = 0, E(e2
n|Fn−1) = σ2 = const.

Under the above conditions we can proceed as follows. Let DΘ ⊂ IRp+q denote
the set of system parameters such that the corresponding polynomials A and C are
stable. For fixed θ ∈ DΘ define the process ε(θ) = (εn(θ)) by the difference equation
Cε = Ay, i.e.

ε = (A/C)(C∗/A∗)e,

with εn = yn = 0 for n ≤ 0. The asymptotic cost function is defined by

W (θ) = lim
n→∞

1
2σ2

Eε2
n(θ).

It is well known and easily shown, that

∂

∂θ
W (θ)

∣∣∣∣
θ=θ∗

= 0 and R∗∆=
∂2

∂θ2
W (θ)

∣∣∣∣
θ=θ∗

> 0.
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To define a weighted recursive prediction error identification method (cf. [11]) let
θ̂n denote the estimator of θ∗ at time n and let the on-line estimate of εn(θ̂n−1) be
denoted by εn. They are constructed as follows. Let θ̂0 ∈ DΘ be an arbitrary initial
guess and set εn = yn = 0 for n ≤ 0. Now, if θ̂k and εk have already been generated
for k ≤ n− 1 then define εn by the equation:

(
Ĉn−1ε

)
n

=
(
Ân−1y

)
n

, (1.5)

where Ân−1, Ĉn−1 denote the polynomials corresponding to θ̂n−1 and (·)n denotes
evaluation at time n. Similarly, we define the on-line estimate of the gradient of the
process ε(θ), denoted by εθ, by

(
Ĉn−1εθ

)
n

= −φn−1, (1.6)

where φn−1 = (−yn−1, · · · − yn−p, εn−1, . . . εn−q)T . Then the weighted recursive predic-
tion error estimate of θ∗ at time N is defined by the recursion

θ̂n = θ̂n−1 − 1
n

KεθNεn, (1.7)

where K is a fixed weighting matrix.
The asymptotic properties of θ̂n have been rigorously analyzed in [1] and [3] under

various technical conditions. In [1] it is required that θ̂n ∈ D0 ⊂ DΘ, where D0 is a
prescribed compact domain, otherwise the process is stopped. In [3] the boundedness
condition above is enforced by a resetting mechanism: if θ̂n /∈ D0 then we redefine it
to be θ̂1 again. To sketch a key result of [1] define the estimation sequence θ̂n,k using
the recursion (1.7) but changing the step-sizes from 1/N to 1/(N + k) and consider a
piecewise constant embedding defined by

θ̂k,s = θ̂k,n for s ∈ [n, n + 1), n ≥ 1.

Introduce a normalized and re-scaled process by first normalizing θ̂k,s − θ∗ by s1/2,
followed by an exponential change of time-scale s = et. This yields a new process
ψk = (ψk,t):

ψk,t = et/2(θ̂k,et − θ∗), t ≥ 0. (1.8)

It is claimed in Theorem 12 Chapter 4.5, Part II of [1] that under appropriate technical
conditions (ψk,t) converges weakly, for k →∞, to the process (x̃(t)) defined by

dx̃(t) = (−KR∗ + I/2)x̃(t)dt + Gdw(t), (1.9)
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where (w(t)) is a standard IRp+q-valued Wiener-process and G is the symmetric positive
semi-definite square-root of KR∗KT , i.e. G = GT and

GG = KR∗KT ,

assuming that
F = −KR∗ + I/2

is asymptotically stable, i.e. all the eigenvalues of F are on the open left half of the
complex plane.

For the recursive estimation procedure with enforced boundedness, that has been
rigorously analyzed in [3], a corresponding result has not yet been fully derived, but a
significant part of the relevant analysis has been completed in [4].

A direct corollary of the cited result of [1] is that the asymptotic covariance matrix
S = S(K) of the estimator process θ̂n exists. Obviously, it is given by

S = Ex̃(t)x̃(t)T ,

and it is well-known that S is the solution of the Lyapunov-equation

(−KR∗ + I/2)S + S(−KR∗ + I/2)T + KR∗KT = 0. (1.10)

Using the partial ordering for symmetric matrices: A ≤ B if and only if B−A is positive
semidefinite, where A,B are symmetric matrices, it is also well-known that S = S(K)
is minimized with respect this ordering for the choice K = (R∗)−1. Then F = −I/2
and for the asymptotic covariance matrix of the error-process we have S = (R∗)−1.

A risk-sensitive criterion for the identification of ARMA-processes will be defined
along the lines of (1.1) and (1.4) by

J(K) =
2
c

lim
T→∞

1
T

log E
(

exp{ c

2

∫ T

0
x̃(t)T HT Hx̃(t)dt}

)
, (1.11)

where c > 0 and HT H is a non-singular weighting-matrix. The minimization of this
criterion with respect to K is the subject matter of this paper. Two domains of defin-
itions of J(K) will be considered. First we consider a feasible set EK, defined in (3.3),
where the cost function is known to be finite, see Corollary 6.1. Then we consider a
feasible set E◦

K, defined in (3.7), on the complement of which the cost function is known
to be infinite, see Corollary 7.1.

!!! Is the closure of EK E◦
K?
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2 Multi-variable linear stochastic systems

The extension of the above setup to multi-variable linear stochastic systems is obtained
as follows: Consider the state-space system

{
ζn+1 = A(θ)ζn + B(θ)en

yn = C(θ)ζn + en

(2.1)

with −∞ < n < +∞, where the function

H(θ) = H(z, θ) = I + C(θ) (zI −A(θ))−1 B(θ) ,

is an m × m square transfer-function. For the sake of convenience we consider the
processes above defined in −∞ < n < +∞. Thus the process y = (yn) is interpreted as
the unique, weakly stationary solution of (2.1). Here θ is a parameter vector belonging
to an open domain DΘ ⊂ IRp.

Condition 2.1 The transfer functions H(θ), θ ∈ DΘ ⊂ IRp, are stable and inverse-
stable. Moreover A(θ), B(θ), C(θ) are twice continuously differentiable with respect to
θ.

Condition 2.2 There exists an increasing family of σ-algebras (Fn) such that en is
Fn-measurable and

E(en|Fn−1) = 0, E
(
eneT

n

) |Fn−1) = Λ∗ , i.e. it is constant for all n,

where
Λ∗ > 0.

It follows that (en) is the innovation process of (yn).
The set of symmetric, positive definite m ×m matrices is denoted by DΛ. Define

for θ ∈ DΘ the estimated innovation process by

ε̄(θ) = H(θ)−1y .

Then the asymptotic cost function is defined for θ ∈ DΘ, Λ ∈ DΛ by

W (θ, Λ) =
1
2
E

(
ε̄T
n (θ)Λ−1ε̄n(θ)

)
+

1
2

log det Λ .

Note that if (en) is an i.i.d. sequence of Gaussian random vectors with distribution
N(0, Λ∗), then W (θ, Λ) is the asymptotic negative log-likelihood function, except for
an additive constant. The gradient of W (θ,Λ) with respect to θ and Λ−1 is given by

Wθ(θ, Λ) = E ε̄T
θn(θ)Λ−1ε̄n(θ)

WΛ−1(θ, Λ) =
1
2

(E ε̄n(θ)ε̄T
n (θ)− Λ).
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Here the gradients of the components of ε̄n(θ) are represented as column-vectors. Set

R∗
1 = Wθθ(θ∗,Λ∗) = E ε̄T

θn(θ∗)Λ∗−1ε̄θn(θ∗) . (2.2)

Then the Hessian of W (θ,Λ) at (θ∗,Λ∗) is

R∗ =

(
R∗

1 0

0 Λ∗ ⊗ Λ∗

)
. (2.3)

Condition 2.3 We assume that for any fixed Λ > 0 the equation

Wθ(θ, Λ) = 0

has a unique solution θ = θ∗ in DΘ, and

R∗
1 = Wθθ(θ∗, Λ∗) > 0 .

A weighted recursive prediction estimation of (θ∗, Λ∗) is obtained as follows. First
define the correction terms

H1n(θ, Λ−1) = ε̄T
θn(θ)Λ−1ε̄n(θ)

H2n(θ, Λ−1) =
1
2
( ε̄n(θ)ε̄T

n (θ)− Λ)

and then consider the recursion
[

θn

Λ−1
n

]
=

[
θn−1

Λ−1
n−1

]
− 1

n
K

[
H1n(θn−1, Λ−1

n−1)

H2n(θn−1, Λ−1
n−1)

]
.

The recursion above is a frozen-parameter recursion from which a genuinely recur-
sive estimation is obtained in a standard way (cf. [1] or [8]). Set

Hn = (H1n,H2n).

It is easily seen that at (θ, Λ) = (θ∗, Λ∗) the sample covariance-matrix of the process
Hn is given by

S∗ =

(
R∗

1 0

0 1
4 E (eeT ⊗ eeT − Λ∗ ⊗ Λ∗)

)
. (2.4)

Omitting technical details and conditions we note that just as in the ARMA-case,
using a piecewise constant embedding, the normalized, re-scaled and re-initialized es-
timation error process converges weakly to a r = p + m2-dimensional process (x̃(t))
defined by

dx̃(t) =
(
−KR∗ +

I

2

)
x̃(t)dt + Gdw(t) , (2.5)
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where (w(t)) is a standard IRp+m2
-valued Wiener-process and G is the symmetric pos-

itive semi-definite square-root of KS∗KT , i.e. G = GT and

GG = KS∗KT ,

assuming that F = −KR∗ + I/2 is asymptotically stable. Equation (2.5) looks very
much the same as equation (1.9) for the ARMA case, but there is a major difference:
the covariance matrix KS∗KT is obtained here instead of KR∗KT and generically

S∗ 6= R∗.

A risk-sensitive identification criterion will be defined by

J(K) =
2
c

lim
T→∞

1
T

log E
(

exp
{

c

2

∫ T

0
x̃(t)T HT Hx̃(t) dt

})
, (2.6)

where c > 0, and H is a non-singular r×r matrix. Note that this is a mixed criterion in
the sense that J(K) is defined in terms of both θ̂n and Λ̂n. The domain of definition of
J will be made clear in below, see (3.3) and (3.7). An explicit solution to the problems
of minimizing J(K) will be given in the special case when the H is block-diagonal of
appropriate dimensions, see Corollary 6.2.

A general risk-sensitive optimization problem can now be formulated as follows: for
given matrices R∗, S∗, where R∗ is an r × r, symmetric, positive semi-definite matrix,
and S∗ is an r × r, symmetric, positive semi-definite matrix

!!! definite or semi-definite ???
consider the state-space equation, with x̃(t) ∈ IRr,

dx̃(t) =
(
−KR∗ +

I

2

)
x̃(t)dt + Gdw(t) , (2.7)

where K is an r × r matrix,
F = −KR∗ + I/2

is asymptotically stable, and G is the unique symmetric positive semi-definite square-
root of KS∗KT , thus in particular

GG = KS∗KT ,

finally (w(t)) is a standard Wiener-process in IRr. Then to find a K for which the
function J(K)

J(K) =
2
c

lim
T→∞

1
T

log E
(

exp
{

c

2

∫ T

0
x̃(t)T HT Hx̃(t) dt

})
, (2.8)
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where c > 0, and H is a non-singular r× r matrix, is minimized. The criterion (2.8) is
the continuous-time version of the functional defined in [12] (see (3.2) of [12]).

The main result of the paper is the minimization of the proposed new criterion with
respect to the weight-matrix K over a feasible set E◦

K, defined in (3.7), on the comple-
ment of which the cost function is known to be infinite, see Theorem 7.1. This general
result is obtained in several steps. The starting point of our analysis is an expression of
the cost function given in LEQG-theory, in particular a result of [10]. First we deter-
mine the unique stationary point of J(K) over a feasible set EK, defined in (3.3), where
the cost function is known to be finite, see Theorem 5.1. The stationary point of J(K)
will be found by solving an extended, and relaxed matrix-valued constrained minimiza-
tion problem, where the equality constraints are defined by a control-Riccati equation.
Then, using a filter-Riccati representation of J(K), we verify that this stationary point
is in fact the unique minimum of J(K) over EK, see Theorem 6.1. Finally, by letting
the parameter c vary we derive the main result.

A new expression for the cost function will be also given as the mutual information
rate between two stochastic processes. These processes are constructed from the nor-
malized and re-scaled estimation error process by using stochastic realization theory.
The interpretation of our main results on minimizing J(K) in this context is, however,
still to be explored.

3 Expressing J(K) via Riccati equations

Functionals of the form of J(K) are well-known in risk-sensitive control or LEQG
(linear exponential quadratic gaussian) control and a number of useful expressions for
J(K) have been found. LEQG control has been first defined by Jacobson in 1973, see
[5], followed by various extensions in Speyer, Deyst and Jacobson, [13], Kumar, [6],
Kumar and Van Schuppen, [7], Whittle [14], and by Bensoussan and Van Schuppen,
[2]. Two good surveys of the area are [10] and [12]. The following proposition is given
as Proposition 6.3.1 in [10]. Define the transfer function G by

G = H(sI − F )−1G. (3.1)

Proposition 3.1 Assume that F = −KR∗ + I/2 is asymptotically stable. Then:

(i) If the H∞-norm of c1/2G(s) is strictly less than 1, then J(K) is well-defined and
finite and

J(K) = lim
s0→∞

− 1
2πc

∫ ∞

−∞
ln | det (I − cG(iω)G∗(iω)) |

[
s2
0

s2
0 + ω2

]
dω. (3.2)

(ii) If the H∞-norm of c1/2G(s) is greater than 1, then J(K) is well-defined and
J(K) = ∞.
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A similar result has been established for discrete time linear stochastic Gaussian systems
in [12].

We will use the following notations: the set of K-s for which F = −KR∗ + I/2 is
asymptotically stable will be denoted by DK:

DK = {K ∈ IRr×r : F = −KR∗ + I/2 is asymptotically stable}.

Obviously DK is an open domain in the set of r × r matrices. Next consider the set of
K-s for which the H∞-norm of c1/2G defined in (3.1) is strictly less than 1:

EK = {K : K ∈ DK and ‖c1/2G‖∞ < 1}. (3.3)

According to (i) of the previous proposition J(K) is well-defined and finite on EK. A
computationally useful expression for J(K) on EK can be given using Lemma 5 and
Theorem 5 of [15] and Proposition 5.3.2 of [10]:

Proposition 3.2 Assume that F = −KR∗ + I/2 is asymptotically stable. Then

(i) the H∞-norm of c1/2G(s) is less than or equal to 1 if and only if the control-Riccati
equation:

F T Q + QF + HT H + cQKS∗KT Q = 0 (3.4)

has a real symmetric solution Q for which the matrix F + cKS∗KT Q is stable.
Moreover, this solution is unique and positive definite.

(ii) the H∞-norm of c1/2G(s) is strictly less then 1 if and only if the control-Riccati
equation above has a real symmetric solution, for which the matrix F +cKS∗KT Q
is asymptotically stable.

Furthermore, in case (ii) the functional J(K) is finite and

J(K) = tr QKS∗KT = tr GQG. (3.5)

A real, symmetric solution Q of (3.4) for which F +cKS∗KT Q is asymptotically stable
will be called a stabilizing solution. Proposition 3.1 implies that on the set

{K : K ∈ DK and ‖c1/2G‖∞ > 1}

J(K) is well-defined and J(K) = ∞.
In the critical case ‖c1/2G‖∞ = 1 we are unaware of any definite result on the

existence of a well-defined J(K). We will therefore extend the definition of J(K) by
writing

J(K) =
2
c

lim inf
T→∞

1
T

log E
(

exp{ c

2

∫ T

0
x̃(t)T HT Hx̃(t)dt}

)
. (3.6)
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Also define an extension of EK as follows:

E◦
K = {K : K ∈ DK , ‖c1/2G‖∞ ≤ 1} . (3.7)

Obviously EK ⊂ E◦
K.

!!! Is the closure of EK E◦
K ?

The minimization of J(K) over E◦
K will considered in Section 7. The next proposi-

tion gives a simple necessary condition for E◦
K not being empty.

Proposition 3.3 Assume that there exists a matrix K, for which −KR∗ + I
2 asymp-

totically stable and ‖c1/2G‖∞ ≤ 1. Then

S∗ > cS∗(R∗)−1HT H(R∗)−1S∗.

PROOF. According to Proposition 3.2 there exists a symmetric, positive definite so-
lution Q of the Riccati equation (3.4). Substituting F = −KR∗ + I/2 into (3.4),
multiplying by c and by S∗(R∗)−1 from the left, (R∗)−1S∗ from the right and complet-
ing to squares the terms containing K, we arrive at the equation

cS∗(R∗)−1Q(R∗)−1S∗ +
(
cS∗(R∗)−1QK − I

)
S∗

(
cKT Q(R∗)−1S∗ − I

)

= S∗ − cS∗(R∗)−1HT H(R∗)−1S∗,

implying that S∗ − cS∗(R∗)−1HT H(R∗)−1S∗ is positive definite.
REMARK. The above necessary condition is also sufficient for E◦

K and even EK not
being empty, see Theorem 5.1.
REMARK. Note that in the case when S∗ = R∗, such as the case of ARMA-systems,
the necessary condition reduces to

R∗ > cHT H.

An alternative expression for J(K) is given in terms of a filter-Riccati equation in
the following proposition, which is implied by Proposition 2.3.1 of [10] or Lemma 8 of
[15]:

Proposition 3.4 Assume that F = −KR∗ + I/2 is asymptotically stable. Then the
H∞-norm of c1/2G is strictly less than 1 if and only if the filter-Riccati equation

FP + PF T + cPHT HP + GG = 0 (3.8)

has a real, symmetric solution, for which the matrix F + cPHT H is asymptotically
stable. This solution is unique and positive definite. In this case the functional J(K)
is well-defined, finite and can be written as

J(K) = tr PHT H. (3.9)

11



Recall that if F +cPHT H is asymptotically stable then P is called a stabilizing solution.
REMARK. It follows immediately that, for sufficiently small c, J(K) is finite and for
c ↘ 0 J(K) converges to

tr S(K)HT H = Ex̃T (s)HT Hx̃(s),

where S(K) is the solution of the Lyapunov-equation

FS + SF T + GG = 0.

4 J(K) as a mutual information rate

In [12] Stoorvogel and Van Schuppen introduced a number of information theoretic
criteria for system identification in the case of discrete-time stochastic processes. They
prove among others that the mutual information rate of the error process of a parameter
estimation obtained from a recursive estimation scheme and an appropriately defined
white noise coincides with the LEQG functional. Proposition 4.1 below claims that
such a representation is possible in the present continuous-time case, as well. Note that
the proof in [12] is based on an application of Szegő’s theorem, which not applicable in
continuous-time.

Consider the state-space equation

dx(t) = Fx(t)dt + c1/2Gdw(t), (4.1)

where w(t) is a standard Wiener process. Note that x(t) = c1/2x̃(t). Extend this system
with

dξ(t) = Fξ(t)dt− cPHT db(t) (4.2)

where b(t) is a standard Wiener process, independent of w(t) and ξ(t) is the stationary
solution of (4.2).

Then the process y defined by

dy(t) = H(x(t) + ξ(t))dt + db(t) (4.3)

is a standard Wiener process, i.e. the transfer function

N (s) = I −H(sI − F )−1cPHT

provides a so-called all-pass ”extension” of the transfer function c1/2G(s). In other
words

[
c1/2G(s),N (s)

]
is all-pass (in particular it is inner, due to the stability of F ),

12



mapping the Wiener process
[

w(t)
b(t)

]
into the Wiener process y(t). Indeed, direct

computation shows that a factorization of I − cGG∗ is given by NN ∗, i.e.

I − cG(iω)G∗(iω) = N (iω)N ∗(iω).

(Cf. Mustafa and Glover [10] Lemma 5.3.2.)
It is easy to see that a minimal realization of

[
c1/2G(s),N (s)

]
is given by





d (x(t) + ξ(t)) = F (x(t) + ξ(t)) dt +
[
c1/2G, −cPHT

] [
w(t)
b(t)

]

dy(t) = H (x(t) + ξ(t)) dt + db(t)
(4.4)

Proposition 4.1 Assume that the ‖c1/2G‖∞ < 1. Consider the auxiliary process y
defined by (4.3) and let I(y, w) denote the mutual information rate between the processes
y and w. Then

J(K) =
2
c
I(y, w) = tr PHT H . (4.5)

PROOF. Recall that the mutual information rate between two processes is defined as
follows. Consider a finite value T and denote by Qy,T and Qw,T the distribution of
the processes y(s), 0 ≤ s ≤ T and w(s), 0 ≤ s ≤ T defined on the space of continuous
vector-valued functions and let Qy,w,T denote their joint distribution. Then

I(y, w) = − lim
T→∞

1
T

E

(
ln

d (Qy,T ×Qw,T )
dQy,w,T

(y(s), w(s), 0 ≤ s ≤ T )
)

, (4.6)

assuming that the limit exists.

The quantity E

(
− ln

d(Qy,T×Qw,T )
dQy,w,T

(y(s), w(s), 0 ≤ s ≤ T )
)

is the divergence be-

tween the joint distribution of y, w and the product measure with the marginal distri-
butions given by y and w separately – taken in the time interval [0, T ].

Let us write equations (4.1), (4.2) and (4.3) in the following form

d(x(t) + ξ(t)) = F (x(t) + ξ(t))dt +
[
c1/2G,−cPHT

] [
dw(t)
db(b)

]

d

[
w(t)
y(t)

]
=

[
0
H

]
(x(t) + ξ(t))dt +

[
dw(t)
db(b)

]
.

In the present case the process y is a Wiener-process, as we have already pointed out,
consequently the product measure with marginal distributions defined by the processes
w and y coincide with the joint distribution of w, b taken on the same time interval.
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Thus Girsanov’s theorem allows us to compute the Radon-Nikodym derivate evaluated
at the values of y, w. Introducing the notation ζ = x + ξ, we have

dQy,T × dQw,T

dQy,w,T
(y(s), w(s), 0 ≤ s ≤ T )

= exp
{
−

∫ T

0
ζ(t)T

[
0,HT

]
d

[
dw(t)
db(b)

]
− 1

2

∫ T

0
ζT (t)

[
0,HT

] [
0
H

]
ζ(t)dt

}
.

Taking the logarithm and using that the first term is a square-integrable martingale
with zero expectation we get that

I(y, w) = lim
T→∞

1
T

E

(
1
2

∫ T

0
ζT (t)

[
0,HT

] [
0
H

]
ζ(t)dt

)
.

The covariance matrix of the stationary process ζ is cP , and thus

I(y, w) =
c

2
tr PHT H ,

proving that the mutual information rate between y and w exists. Taking into account
the equation (3.9) the proposition follows.

Thus the minimization of J(K) is equivalent to minimizing the mutual information
rate between the fixed Wiener-process w and the K-dependent Wiener-process y.

5 Stationary points of J(K) over EK: a control-Riccati
approach

In this section we prove that J(K) has a unique stationary point in EK, and determine
its value, using the control-Riccati representation of J(K). This is the content of
Theorem 5.1. The fact that this stationary point is indeed the unique minimum of
J(K) over EK will be verified in the next section. Since the derivation of the next
section self-contained and is related to the present section only in using an intelligent
guess for the optimal value of K, some of the details of the proof of Theorem 5.1 of the
present section will be omitted.

The stationary point will be first determined for an extended, relaxed optimization
problem, stated as a matrix-valued constrained minimization problem, where the equal-
ity constraints are defined by a control-Riccati equation, assuming that the solution is
not on the boundary of the feasible set. It is then verified that the obtained stationary
point is indeed a solution of the original problem.
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Theorem 5.1 Assume that S∗ > cS∗R∗−1HT H(R∗)−1S∗. Then the set EK defined
under (3.3) is non-empty, and J(K) has a unique stationary point in EK given by

K∗ =
(
R∗ − cS∗(R∗)−1HT H

)−1
.

The corresponding cost is

J(K∗) = tr
(
R∗ (S∗)−1 R∗ − cHT H

)−1
HT H .

Note that the optimal K∗ may be non-symmetric, which is an unusual feature of
risk-sensitive identification.

To prove Theorem 5.1 we now define an extended problem. Let the set of positive
definite symmetric matrices Q be denoted by DQ. Consider the extended variable
(K, Q) with K ∈ DK, Q ∈ DQ and, motivated by Proposition 3.2, define a relaxed
constrained minimization problem as follows.

minimize tr QKS∗KT (5.1)
subject to K ∈ DK, Q ∈ DQ,

F T Q + QF + HT H + cQKS∗KT Q = 0. (5.2)

Note that due to the nonsingularity of HT H any solution Q of the equation (5.2) is
nonsingular.

By virtue of Proposition 3.2, if we add the constraint that F +cKS∗KT Q is asymp-
totically stable, then the constrained optimization problem is equivalent to minimizing
J(K) over EK. For the cost function (5.1) we introduce the notation

J(K, Q) = tr QKS∗KT .

Theorem 5.2 Assume that S∗ > cS∗(R∗)−1HT H(R∗)−1S∗. Then the feasible set for
the constrained minimization problem (5.1), (5.2) is non-empty, and there is a unique
(K∗, Q∗) satisfying the first order necessary conditions of optimality, given by

K∗ = (R∗ − cS∗(R∗)−1HT H)−1,

Q∗ = (R∗ − cHT H(R∗)−1S∗)(R∗)−1HT H

= HT H − cHT H(R∗)−1S∗(R∗)−1HT H. (5.3)

The corresponding cost is

J(K∗, Q∗) = tr HT H(R∗S∗−1R∗ − cHT H)−1.
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PROOF. The Lagrangian of the constrained optimization problem is as follows:

L(K, Q,Λ) = tr (GQG + Λ(F T Q + QF + HT H + cQGGQ)), (5.4)

where the Lagrange-multipliers can be assumed to be represented by a symmetric ma-
trix Λ, due to the symmetry of the constraint given by the control-Riccati equation
(5.2).

Computing the partial derivates with respect to K, Q and Λ we arrive at the
following equations:

2QKS∗ − 2QΛR∗ + 2cQΛQKS∗ = 0 , (5.5)

GG + ΛF T + FΛ + cΛQGG + cGGQΛ = 0. (5.6)

and the Riccati equation (5.2).
Multiplying (5.5) by Q−1 from the left, and by KT from the right we get that

KS∗KT − ΛR∗KT + cΛQKS∗KT = 0. (5.7)

Using F = −KR∗ + I/2 in (5.6) we obtain that

KS∗KT + Λ− ΛR∗KT −KR∗Λ + cΛQKS∗KT + cKS∗KT QΛ = 0.

Subtracting (5.7) + (5.7)T from the latter equation we get:

Λ−KS∗KT = 0 . (5.8)

We prove, that if K ∈ EK then K and henceforth Λ is nonsingular. Indeed, assume
that xT K = 0 for some x 6= 0. Then xT F = xT (−KR∗ + I/2) = xT /2, and thus 1/2 is
an eigenvalue of F T , and F T would not be asymptotically stable.

Substituting (5.8) into the first term of (5.7) we obtain that

Λ− ΛR∗KT + cΛQKS∗KT = 0 ,

and multiplying by Λ−1 we get:

I − (R∗ − cQKS∗) KT = 0 . (5.9)

Now let us consider the Riccati equation (5.2) with the substitution F = −KR∗ + I
2 :

Q−R∗KT Q−QKR∗ + HT H + cQKS∗KT Q = 0 .

Now multiplying (5.9) by Q we get

Q−R∗KT Q + cQKS∗KT Q = 0
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and using the latter equality we get

−QKR∗ + HT H = 0

from which we get
QK = HT H(R∗)−1 . (5.10)

Inserting into (5.9) we arrive at the conclusion that the first order necessary conditions
of optimality given in (5.5) and (5.6) together with the Riccati equation (3.4) uniquely
determine K by

K−1 = R∗ − cS∗(R∗)−1HT H . (5.11)

We get Λ and Q from (5.8) and (5.10), respectively. In summary, the only possible
stationary point is

K∗ = (R∗ − cS∗(R∗)−1HT H)−1

Λ∗ = (R∗ − cS∗(R∗)−1HT H)−1S∗(R∗ − cHT H(R∗)−1S∗)−1 ,

Q∗ = HT H(R∗)−1(R∗ − cS∗(R∗)−1HT H)
= HT H − cHT H(R∗)−1S∗(R∗)−1HT H.

The invertibility of (R∗ − cS∗(R∗)−1HT H) follows from the condition

S∗ > cS∗(R∗)−1HT H(R∗)−1S∗.

The above triplet is the only possible stationary point and using the above argument in
a reverse direction it can be verified that it is indeed a stationary point. The associated
cost is

J(K∗, Q∗) = tr Q∗K∗S∗K∗T = tr Q∗Λ∗

= tr HT H(R∗)−1S∗(R∗ − cHT H(R∗)−1S∗)−1

= tr HT H(R∗S∗−1R∗ − cHT H)−1 ,

and with this the proof of Theorem 5.2 is complete.

PROOF Of THEOREM 5.1. First assume that K◦ ∈ EK satisfies the first order neces-
sary condition of optimality for the minimization of J(K). Let now K vary in a small
neighborhood of K◦, and let Q = Q(K) be the unique, real, symmetric, positive definite
solution of the control-Riccati equation (3.4), for which the matrix F + cTKS∗KT Q is
asymptotically stable. It is easy to see that Q(K) is a smooth function of K in a small
neighborhood of K◦. Thus it follows, by elementary calculus, that K◦ satisfies the
first order necessary condition of optimality for the minimization of J(K) if and only if
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(K◦, Q◦) satisfy the first order necessary conditions of optimality for the the constrained
minimization problem (5.1), (5.2). But then we must have K◦ = K∗, Q◦ = Q∗.

To complete the proof we have to show that K∗ is indeed in EK. But this follows
from the fact that Q∗ is a stabilizing solution. Indeed,

F T + cQ∗GG = (−R∗K∗T + I/2) + cQ∗K∗S∗K∗T = −I/2.

An alternative proof of Theorem 5.1 characterizing the unique stationary point of
J(K) in EK can be obtained using the representation of the asymptotic cost functional
given in (3.9) via the filter-Riccati equation and applying the Lagrange-multipliers
method. Not going into details we remark that the optimal value of the corresponding
Lagrange-multipliers, denoted generically by Λf and the optimal value of P are given
as follows:

Λ∗f = HT H, P ∗ = K∗S∗(R∗)−1.

With these values we obtain

F + cP ∗HT H = −K∗R∗ + I/2 + cP ∗HT H = −I/2, (5.12)

just like in the control-Riccati case.

Remark. It can also be shown that the Hessian-matrix of J(K) at K = K∗ is positive
definit. Thus K∗ is a strict local minimum of J(.).

6 Minimization of J(K) over EK: a filter-Riccati approach.

Next we show, using the filter-Riccati equation representation of J(K), that the unique
stationary point of J(K) in EK found in the previous section in Theorem 5.1, is in fact
the unique minimum point if J(K) in EK.

Theorem 6.1 Assume that S∗ > cS∗(R∗)−1HT H(R∗)−1S∗. Then J(K) has a unique
minimum point in EK given by

K∗ = (R∗ − cS∗(R∗)−1HT H)−1.

The corresponding cost is

J∗ = J(K∗) = tr (R∗S∗−1R∗ − cHT H)−1HT H .

PROOF. First we note that if F is asymptotically stable then P is positive definite.
(This well-known fact of the theory of Riccati equations is shown as follows. If Px = 0,
then xT KS∗KT x = 0, thus KT x = 0, consequently

F T x =
x

2
,
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contradicting the assumed stability of F .
Rewrite now the filter-Riccati equation so that R∗ is replaced by R∗−cS∗(R∗)−1HT H

in F = −KR∗+I/2, a step motivated by the results of [12] or of Section 5 on the unique
stationary point of J(K). Set

Fmod = −K
(
R∗ − cS∗(R∗)−1HT H

)
+

I

2
.

Then

FmodP + PF T
mod + K

(
S∗ − cS∗(R∗)−1HT H(R∗)−1S∗

)
KT

+c(KS∗(R∗)−1 − P )HT H(KS∗(R∗)−1 − P )T = 0 . (6.1)

We prove that this equation in turn implies that Fmod is asymptotically stable. In fact,
since P > 0 it is enough to check the controllability of the pair

(
Fmod,

[
K

(
S∗ − cS∗(R∗)−1HT H(R∗)−1S∗

)
, (KS∗(R∗)−1 − P )HT H

])
.

For this we apply the celebrated P-B-H test. Consider a left eigenvector yT of the
matrix Fmod for which

yT
[
K

(
S∗ − cS∗(R∗)−1HT H(R∗)−1S∗

)
, (KS∗(R∗)−1 − P )HT H

]
= [0, 0] , (6.2)

holds. Then, since S∗ − cS∗(R∗)−1HT H(R∗)−1S∗ is nonsingular, yT K = 0. Conse-
quently, yT PHT H = 0 and yT F = yT

2 . Multiplying the filter-Riccati equation by yT

and y from the left and the right, respectively, we get that

yT
(
FP + PF T + KS∗K + cPHT HP

)
y = 0 ,

and using the equalities above equation

yT Py = 0

is obtained, contradicting to P > 0.
Next we compare the matrix P in (6.1) with

(
R∗S∗−1R∗ − cHT H

)−1. Straightfor-
ward calculation gives that – introducing the notation

Pmod = P − (
R∗S∗−1R∗ − cHT H

)−1

equation (6.1) can be rewritten as follows:

FmodPmod + PmodF
T
mod (6.3)

+
[
Fmod +

I

2

] (
R∗S∗−1R∗ − cHT H

)−1
[
Fmod +

I

2

]T

+ c(KS∗(R∗)−1 − P )HT H(KS∗(R∗)−1 − P )T = 0 .

19



Since the last two terms in this equation are positive semidefinit the asymptotic stability
of the matrix

−K
(
R∗ − cS∗(R∗)−1HT H

)
+

I

2
implies that

P ≥ (R∗S∗−1R∗ − cHT H)−1 (6.4)

Since the functional J(K) on EK can be written in the form J(K) = tr PHT H, (6.4)
implies

J(K) = tr PHT H ≥ tr
(
R∗S∗−1R∗ − cHT H

)−1
HT H.

Since HT H is nonsingular, equality holds if and only if P =
(
R∗S∗−1R∗ − cHT H

)−1.
Substituting this value into (6.3) we obtain that KS∗(R∗)−1 = P . Thus the unique
optimal K is

K∗ =
(
R∗ − cS∗(R∗)−1HT H

)−1
,

concluding the proof of the Theorem 6.1.
REMARK. Note, that in the previous proof the invertibility of the matrix H was
not used. On the other hand, in order to write the LEQG cost in form of (3.9) in
Proposition 3.4 the observability of the pair (H, F ) is essential. Thus the above proof
can also be used in the case of singular H assuming that K ∈ EK and (H,F ) is an
observable pair to derive that

J(K) ≥ tr (R∗S∗−1R∗ − cHT H)−1HT H .

At the same time, the assumption that the pair (H, F ) is observable for any matrix
K ∈ EK is obviously equivalent to the invertibility of H.

In the special case of ARMA processes we have S∗ = R∗, thus we get the following
result:

Corollary 6.1 Consider an ARMA-system and assume that R∗ > cHT H. Then the
set EK defined under (3.3) is non-empty, and J(K) has a unique minimum in EK given
by

K∗ =
(
R∗ − cHT H

)−1
,

and the corresponding cost is

J(K∗) = tr HT H
(
R∗ − cHT H

)−1
.

The above value for the optimal K has been found for AR-processes also in [12].
To apply our general result for multi-variable linear stochastic systems consider first

the special case of Theorem 6.1 when H, R∗, S∗ are block-diagonal, say

H =
(

H1 0
0 H2

)
(6.5)
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and the partition of H is identical with that of R∗ and S∗. Then by the above theorem,
K∗ is also block-diagonal with blocks K∗

1 and K∗
2 , say, and for i = 1, 2 we have

K∗
i =

(
R∗

i − cS∗i (R∗
i )
−1HT

i Hi

)−1
. (6.6)

If we knew beforehand that K∗ is block-diagonal, a fact that apparently can not be
easily shown directly, then we could restrict the minimization problem to the set of
block-diagonal matrices K, say with

K =
(

K1 0
0 K2

)
,

and we could decompose the original problem, and we could write

J(K) = J1(K1) + J2(K2).

The minimization of J(K) over block-diagonal K-s thus can be reduced to two separate
minimization problems with respect to K1 and K2. A direct application of the above
remark gives the following result:

Corollary 6.2 Consider the multivariable linear stochastic systems given by (2.1), and
satisfying Conditions 2.1, 2.2 and 2.3. Consider the risk-sensitive identification cri-
terion for (θ∗, Λ∗) given in (2.6) such that H is block-diagonal, see (6.5). Assume
that

S∗ > cS∗(R∗)−1HT H(R∗)−1S∗,

in particular
R∗

1 > cHT
1 H1,

where R∗, S∗ are defined under (2.3), (2.4), and R∗
1 is defined under (2.2). Then the

set EK defined under (3.3) is non-empty, and J(K) has a unique minimum point in
EK, it is also block-diagonal and its (1, 1) block is given by

K∗
1 =

(
R∗

1 − cHT
1 H1

)−1
.

Check the following !
REMARK. Note that the condition R∗

1 > cHT
1 H1 is scale -invariant in the sense that if

the innovation is multiplied by a constant matrix, then the validity of this condition is
unaffected. This follows from the fact that R∗

1 is normalized by the covariance-matrix of
the innovation, Λ∗ , see (2.2), thus it is scale-independent. The situation is different in
estimating Λ∗. In the condition S∗2 > cS∗2(R∗

2)
−1HT H(R∗

2)
−1S∗2 with obvious definitions

of R∗
2 and S∗2 , see (2.3) and (2.4), we see that multiplying the innovation by a constant

scalar leaves the right hand side unaffected, while the left hand side is multiplied by
the square of this constant.
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7 Minimization of J(K) over E◦
K.

So far we have considered the minimization of J(K) over EK defined in (3.3) as

EK = {K : K ∈ DK and ‖c1/2G‖∞ < 1}.

Recall that Proposition 3.1 implies that on the set

{K : K ∈ DK and ‖c1/2G‖∞ > 1}

J(K) is well-defined and J(K) = ∞ and the definition of J(K) on the set

E◦
K = {K : K ∈ DK , ‖c1/2G‖∞ ≤ 1} . (7.1)

was extended in the following way ( see (3.6)):

J(K) =
2
c

lim inf
T→∞

1
T

log E
(

exp{ c

2

∫ T

0
x̃(t)T HT Hx̃(t)dt}

)
. (7.2)

Now letting the constant c vary we will prove the following extension of Theorem 5.1:

Theorem 7.1 Assume that S∗ − cS∗(R∗)−1HT H(R∗)−1S∗ is positive definite. Then
the set E◦

K defined under (3.7) is non-empty, and J(K) achieves its minimum over E◦
K

at the unique minimizing K given by

K∗ = (R∗ − cS∗(R∗)−1HT H)−1.

The optimal cost is

J∗ = J(K∗) = tr (R∗S∗−1R∗ − cHT H)−1HT H.

REMARK. Observe that Theorem 7.1 implies the following result which might be
surprising at first sight. Consider the set

Ec =
{

c | there exists a K such that K ∈ DK and ‖c1/2G‖∞ ≤ 1
}

.

Then by the continuity of the H∞-norm with respect to c and K the set Ec is an open
interval.
PROOF. Since in the course of the proof the parameter c will vary we shall express
this dependence by the notations E◦

K(c), EK(c) etc. with their obvious meaning. In
view of Theorem 6.1 it is enough to prove that if K ∈ E◦

K(c) but K /∈ EK(c) then
J(K, c) > J(K∗(c), c).
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First observe that c
2J(K, c) is a monotonically increasing function of c and if K ∈

E◦
K(c) then K ∈ EK(c′) for any c′ < c. On the other hand Theorem 6.1 implies

lim
c′↗c

J(K∗(c′), c′) = J(K∗(c), c) , (7.3)

as long as the inequality S∗ > cS∗(R∗)−1HT H(R∗)−1S∗ holds.
Now let K ∈ E◦

K(c). Then by Propositions 3.1 and 3.3

S∗ > cS∗(R∗)−1HT H(R∗)−1S∗,

hence (7.3) applies. Thus

c

2
J(K, c) ≥ lim

c′↗c

c′

2
J(K, c′) ≥ lim

c′↗c

c′

2
J(K∗(c′), c′) =

c

2
J(K∗(c), c), (7.4)

The first inequality follows from the monotonicity of c
2J(K, c), the second follows since

K ∈ EK(c′), and the last equality is just (7.3). This proves that K∗(c) is optimal even
in E◦

K(c).
To prove uniqueness we need a more delicate analysis. First note, that (7.4) implies

that
c

2
J(K, c)− c

2
J(K∗(c), c) ≥ lim

c′↗c

c′

2
(
J(K, c′)− J(K∗(c′), c′)

)
. (7.5)

Take a c′ with 0 < c′ < c, then by Proposition 3.4 we can write

∆J(c′) : = J(K, c′)− J(K∗(c′), c′) = tr PHT H − tr P ∗(c′)HT H = tr ∆P (c′) ·HT H
(7.6)

with
∆P (c′) = P − P ∗(c′).

Using the inequality tr AB ≥ λmin(B)λmax(A), we get

∆J(c′) ≥ λmin(HT H)λmax(∆P (c′)). (7.7)

Thus to estimate ∆J(c) from below for K 6= K∗(c), K ∈ E◦
K it sufficient to estimate

∆P (c′), c′ < c from below.
For this purpose we will need the following addition to Proposition 7.1, implied by

Proposition 2.3.1 of [10] or Lemma 8 of [15]:

Proposition 7.1 Assume that F = −KR∗ + I/2 is asymptotically stable. Then the
H∞-norm of c1/2G is less than or equal to 1 if and only if the filter-Riccati equation:

FP + PF T + cPHT HP + GG = 0. (7.8)

has a real, symmetric solution P for which the matrix F +cPHT H is stable. Moreover,
this solution is unique and positive definite.
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The following simple identity for the comparison of two solutions of the filter-Riccati
equation corresponding to different K matrices is a direct consequence of the Propo-
sition above. Assume that K1,K2 ∈ E◦

K(c′) and denote by P1 = P1(c′), P2 = P2(c′)
the corresponding unique, symmetric, positive definite solutions of the filter-Riccati
equation (7.8). Then, using the notation F1 = −K1R

∗ + I
2 , and F2 = −K2R

∗ + I
2 , we

get by direct computation, dropping the argument c′ for a moment:

(
F1 + c′P2H

T H
)
(P1 − P2) + (P1 − P2)

(
F1 + c′P2H

T H
)T

+ (7.9)

+c′ (P1 − P2) HT H (P1 − P2) + K1S
∗KT

1 −K2S
∗KT

2

− (K1 −K2) R∗P2 − P2R
∗ (K1 −K2)

T = 0 .

Apply this identity choosing K1 = K ∈ E◦
K(c′), K2 = K∗(c′) ∈ EK(c′). (Note that the

condition on K2 has been deliberately strengthened). Then

P1 = P1(c′) = P, P2 = P2(c′) = P ∗(c′) = K∗(c′)S∗(R∗)−1, F1 = F = F (K).

Thus the following Riccati equation is obtained for P − P ∗(c′) = ∆P (c′):

(
F + c′P ∗(c′)HT H

)
∆P (c′) + ∆P (c′)

(
F + c′P ∗(c′)HT H

)T
+ (7.10)

+c′∆P (c′)HT H∆P (c′) +
(
K −K∗(c′)

)
S∗

(
K −K∗(c′)

)T = 0.

We show that (7.10) implies that F + c′P ∗(c′)HT H is asymptotically stable for any
K ∈ E◦

K(c′). Indeed, first note that

F + c′P ∗(c′)HT H = − (
K −K∗(c′)

)
R∗ − I

2
(7.11)

in view of (5.12). Now, if ξ is a right eigenvector of
(
F + c′P ∗(c′)HT H

)T with eigen-
value λ, then (7.10) implies that

2 Re λ ξ
T ∆P (c′)ξ + ξ

T (
K −K∗(c′)

)
R∗ (

K −K∗(c′)
)T

ξ ≤ 0 .

Now if we had Re λ ≥ 0 then (K −K∗(c′))T ξ = 0 should hold. Multiplying (7.11) by
ξ
T from the left we obtain that λ = −1

2 , which is a contradiction. Thus Re λ < 0.
Let denote by ∆P (c′) the solution of the Lyapunov-equation obtained from (7.10)

by removing the quadratic term:

(
F + c′P ∗(c′)HT H

)
∆P (c′) + ∆P (c′)

(
F + c′P ∗(c′)HT H

)T

+
(
K −K∗(c′)

)
S∗

(
K −K∗(c′)

)T = 0. (7.12)
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Then obviously,
∆P (c′) ≥ ∆P (c′) . (7.13)

Now we are going to take the limit for c′ ↗ c. Then

∆P (c′) → ∆P (c) .

Obviously ∆P (c) 6= 0 for K 6= K∗(c), and ∆P (c) is positive semidefinit for K ∈ E◦
K(c)

due to the asymptotic stability of F + cP ∗(c)HT H, and thus λmax(∆P (c)) > 0. We
get that ∆J(c) > 0 for K 6= K∗(c), as stated. Thus Theorem 7.1 is proved.

Corollary 7.1 Consider an ARMA-system and assume that R∗ > cHT H. Then the
set E◦

K defined under (3.7) is non-empty, and J(K) achieves its minimum over E◦
K at

the unique minimizing K given by

K∗ =
(
R∗ − cHT H

)−1
,

and the corresponding cost is

J(K∗) = tr
(
R∗ − cHT H

)−1
HT H .

Similarly the minimization of the risk-sensitive identification criterion for multi-
variable linear stochastic systems given in Corollary 6.2 can be extended to cover min-
imization over E◦

K:

Corollary 7.2 Consider the multi-variable linear stochastic systems given by (2.1),
and satisfying Conditions 2.1, 2.2 and 2.3. Consider the risk-sensitive identification
criterion for (θ∗, Λ∗) given in (2.6) such that H is block-diagonal, see (6.5). Assume
that

S∗ > cS∗(R∗)−1HT H(R∗)−1S∗,

in particular
R∗

1 > cHT
1 H1,

where R∗, S∗ are defined under (2.3), (2.4), and R∗
1 is defined under (2.2). Then the

set the set E◦
K defined under (3.7) is non-empty, and J(K) achieves its minimum over

E◦
K at a unique minimizing K∗, it is also block-diagonal and its (1, 1) block is given by

K∗
1 =

(
R∗

1 − cHT
1 H1

)−1
.
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