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BIBO Stability of Linear Switching Systems is time-varying, and the set of controllers should be restricted so that
the stability of the time-varying closed-loop system is ensured for any
Gyorgy Michaletzky and Laszl6 Gerencsér choice of the controller.

In this note, the following closely related result will be proved: as-
sume that for any arbitrary switching paththe linear time-varyin
Abstract—n this note, we show that for linear switching systems of the t 11)i by ded _y t—b gdpd tout (BIBO) st bly _g th
form @,41 = An@, + u,y1, Where the matrices A,, are chosen ar-  SYS€M (1.1) is bounde -Input=bounded-outpu ( ) stable in the
bitrarily from a given set of matrices, bounded-input-bounded-output sta- ~ Se€nse that for any bounded input sequenge, j > 1, the output se-
bility implies uniform exponential stability. quencer(j), 7 > 0is bounded, as well. Then the homogeneous linear

Index Terms—Bounded-input-bounded-output  (BIBO) stability, switching-system is exponentially stable in a sense to be defined later.

switching systems, uniform exponential stability.
Il. BIBO STABILITY

. INTRODUCTION Denote byRZ, the set of infinite sequencespfdimensional vectors,
and byl the set of norm-bounded infinite sequenceg-dimensional
vectors.

For any switching patla: [0,1,...) — T, let us denote by the
linear operator for which

Suppose that we are given a set of regalx p matrices
A = {A,|y €T}, wherel is an arbitrary set of indexes. Con-
sider theswitching linear system

z(n+1) = Agnyz(n) +u(n +1) (1.1) T, ((0),u(1).u(2),...) = (x(0), 2(1),2(2),...) (2.1)

wherexz(0) € RP, 0:[0,1,...) — I'is an arbitraryswitching signal where the sequencsj), j > 0 is generated by
while u(1),u(2),..., € R” is an input signal. The problem of finding

conditions for various kinds of stability of the system above has re- x(n+1) = Asmyx(n) +uln + 1)
ceived a fair amount of attention recently, both for discrete-time and )
continuous-time systems. from the initial VeCtOI’;L’(()). ObViOUS'y

A number of papers focused on finding appropriate switching
strategy in order to stabilize the system; see, e.g., [9], [10], and [15].

An_other line of research 'S to char_acte_rlze _systems which are asyrR%-te that introducing the initial condition(—1) = O we obtain that
totically stable for any arbitrary switching signaj see, e.g., [5], [7]. y . . .

. . -, " x(0) can be considered a%0) = x(0). Using this,T, can be written
[8], [12], and [13]. In [1] and [6], Lie-algebraic conditions are given
h ] . . . shortly as
implying the existence of a common quadratic Lyapunov-function.
Dayawansa and Martin [3] proved that for compact linear polysystems Tow—=a
uniform asymptotic stability implies the existence of a common 7
Lyapunov function, which is not necessarily quadratic. Their proof {§herey — (u(0),u(1),...), » = (2(0), z(1),...).
carried out for continuous-time systems, but without too much effort pefinition 2.1: The switching system (1.1’) determined by the set
it works for discrete-time systems, as well.

Stability of switching systems is an important technical issue in re- A={A,|yeT} CR*?
cursive identification and stochastic adaptive control. In the context of
recursive identification, the estimated inverse system is time varyirggBIBO stable, if, for any switching path, the linear operato¥’,
and the set of inverse systems should be restricted so that the stabitigps bounded input sequences into bounded output sequences. In other
of the time varying system is ensured. Assuming that the inverse plamards
can be described by finite-dimensional systems with fixed dimension ‘
the problem reduces to finding conditions under which the response of T, (%) C I%.
a time-varying linear system exited by a signal which is bounded in ' o ) )
a certain stochastic sense, stays bounded in a certain stochastic sen@€finition 2.2: The switching system (1.1) is uniformly exponen-
Such a condition is given in [4, Condition 4.2], where the existence BR!ly stable, if there exista < 1 andc < oo, such that for any
a joint quadratic Lyapunov function is assumed. In the light of the réWitching pathr and for the identically zero input(j) = 0, > 1,
sults of the work of [3], this condition is obviously too restrictive. Thd® norm of the output sequer_men), n > 0 defined by the (1.1) can
question arises as to what extent can [4, Condition 4.2] be relaxed. Sif-Pounded above as follows:
ilar problems arise in stochastic adaptive control, where the controller n
llz(m)]| < eA™[|l2(0)]].

T,: R, — RZ..
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n k+ﬁ 3
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_ ST 27 (n+ 1)
<cA ||:v(())||—|—Zc)\' Tu()] < E—1

]':; <k+ll¢+n).ra(n+1)
<o <||x<o>|| + 2 e ||u<j)||) '
L=A >

.+ k
1 ' identities:” = A7 nt
Scl N 51>1P||U(J')|| using the identitiese”(n + 1) Az (n) and < 5 ) +
— A g20 k k+1 . . .
nt — (") Keepingk fixed it follows from the
foralln > 0. k-1 k

Conversely, let us assume that the system (1.1) is BIBO stable. Fifgfluction step that (2.7) holds for all. Now, changek to k + 1.

we show that for anfixedswitching path the operatof,, is bounded Eduation (2.7) holds fon = 0, consequently the induction step with
on the Banach-spad&. . In fact, due to itsfinite structure i.e., the respect ton can be applied again. This concludes the proof of the

value ofz(n) depends only on the values of finitely many input vectordemma. _ u

namely onu(1).. .., u(n) and the initial condition:(0), it is easy to ~ rom (2.6) and (2.7), it follows that

see that it is @losedoperator. Since it is defined on the whole Banach- (K. )k+1

spacd?, it should be continuous. Denote its norm by |27 (n)]] < ﬁ”l’o” (2.8)
Ko = ||T5]. < k )

Now, fix a switching pathr and an initial condition:(0) and de- foranyk > 0. Consequently, the sequeripe” (n)|| tends to zero with
fine the inputu(j) = 0, if j > 1. Denote the corresponding outputMore than any polynomial speed. We show that the rate of convergence
sequence by’ (n) is in fact exponentially fast.
Note that (2.8) can be expressed in the following manner:
27(0) =z(0)

a%(n) =As(n—1)Aa(n—2) -+ Aox(0). I4o(m—1)4otn—2) - Aol < 77 o
Then, the inequality < k )

(E)™ (2.9)

127 (n)]| < Ko ||l=(0)]] igFny k> 0,
Now, working along the same switching path consider a vector
holds. Thusz” (n) is a bounded sequence. Let us use this sequenceas R? and fix an indexj > 1. Excite (1.1) by the impulse
a new input sequence, in other words apply the opeftagain. We ) )
obtain again a bounded sequence, thus the opéfatoan be applied wja(n) = { 0, !f n # J’
again. Therefore, the following recursive definition will be used: ’ r, ifn=j.

=5(0) =x(0) (2.2) Observe that the initial condition is defined&) = «(0) = 0.
- - Repeating the same construction as previously shown , we obtain
20 (n) =2 (n) (2.3) that
2 (0) ==2(0) (2.4) Jpyes
oy y o o {3
zi(n+1) =A,yze(n) + i1 (n+ 1) [ As(ntin)Acnri—2y - Aol < % (2.10)
k>1, n > 0. (2.5) < k )

Since the sequengey (0), =7 (1), 27 (2), .. .) is obtained from the se- ¢, anyk > 0.

quencg:(0),0,0,...) applying the operatdf,, ¥ + 1 times, i.e., Introduce the following notation:

F =T

do(n) = sup lAo(n+i-DAsmis—2) - Aspll (2.11)
wherezZ = (22(0),22(1)....), z = (2(0),0,0,...) it follows that =
. - forn > 1.
128 ()]l < (F)™ [J(0)]]. (26)  Lemma2.2:¢,(n) tends to zero exponentially fast, say
The following lemma will be used to set a lower bound £§«r.). bo(n) < co Al (2.12)
Lemma 2.1: We have
k+n with somel < ¢ < 00,0 < As < 1.
2k (n) = < i ) “(n) (2.7) Proof: The property| AB|| < ||A]|||B]] implies that
Proof: We prove the lemma by induction with respecktandn. bo(n+m) < dg(n)ds(m) (2.13)

Fork = 0 andn arbitrary (2.7) holds by definition. Similarly, if = 0 . . ) )
and# is arbitrary (2.7) holds again. and, thuslog ¢, (n) is a subadditive function. Furthermore, (2.10) im-

Now, let us fixk andn, and assume that (2.7) is true fef (), if plies thaflog ¢, (n) tends to—oc. Now it is well known (see [14]) that
j < kandl > 0andifj =k andl < n. We are going to show that it

.1 ) a1
holds forz{ (n + 1), as well. In fact lim - log ¢ (n) = inf - log ¢o(n) < 0

zZi(n+1) =Asyzi(n) + 21 (n+ 1) which implies the claim. ]
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It remains to prove that, and ., can be chosen uniformly with Then, forV(k) < j < N(k+ 1)
respect to the switching path.

Let us observe that to this aim it is enough to show that 2(j) = ze(J) + 241 (J — N (k) Aot
K =sup K, < ¢ (2.14) Now, if
. 7 . . . 2 () Ck+1
where the supremum is taken with respect to all switching paths N(k)<j'1iI’)V(k+l) [z (DI > B
Remark: Note that (2.14) means by definition that is product- -
bounded. (see [2]). then we sef\.41 = 0. Otherwise, také .1 = 1. In both cases
Indeed, repeating the arguments in the proof of Lemma 2.1 for any -
. . . .. - - “k+1
switching path usindy instead ofKk’,, we get for sup [l (DIl = 5
N(k)<j<N(k+1)
¢(n) = e Aot Ao(ntsi—2) Aol holds. Continuing this way we can construct an unbounded response
B sequence: generated by a bounded input sequence, contradicting to
the upper bound the BIBO assumption.
JoRH Thus, (2.14) holds, concluding the proof of the theorem. [ |
o(n) < T (2.15) Itis worth formulating an immediate consequence of the theorem as
< ' v ) a separate corollary.

Corollary 2.1: If the switching system determined by the set of ma-
for anyk > 0. Now, repeating the arguments in the proof of Lemm#ficesA = {A.|y € I'} is BIBO stable, then there exists\a< 1 such
2.2 we getd(n) converges to zero exponentially fast, and this is théat all eigenvalues of the matrices are less than or equal fg i.e.,
statement of the theorem.

To prove (2.14) an indirect argument will be applied. Assume
that there is no unlversal_ bounql fgr_ the operatﬁ_xs Then, for any wherel...«(A4) denotes the eigenvalue of the matdxwhich has the
sequence:, k > 1 tending to infinity we can find a sequence of
switching pathsr;, and input sequences, = (u;(0),u;(1),...) largest absolut_e ya_lue. . . .
with sup -~ [|lux ()| < 1 such that for the responSEsdeﬁned by . Proof: This is |mmed|qte from the obger\_/atlon that choosing the

120 = switching paths to be identicallyy and vanishing the input from the
previous theorem, we obtain that

[Amax (A5)] < A

e = Toeryuk

we have thatup,, . [l (n)|| > cx. Without violating this property [[AT]] < eA”

we can also assume that for some finitge we haveuy(j) = 0 for .

j > ni and proving the corollary. |
lzk (i)l > ek, for somel < j < ny. IIl. CONCLUSION

Also, without loss of generality, we might defing (;j) = 0, for j < 0. We have proved that BIBO stability of a switching linear system im-

Assume now that a sequengetending to infinity isgivenand define - Plies that it is uniformly exponentially stable. It follows, using a result
a sequence of time index@&(k) = ny + - -+ ng, k > 1, N(0) = ¢ of Dayawansa and Martin, that the family of transition matrices have

and the input sequence ajoint, not necessarily quadratic, Lyapunov function. The extension of
this result to BIBO stability in a stochastic sense is an open problem,

w(j) = i N1t (j — N(R)) >0 the solution of which would resolve a fundamental technical issue in
V= L i 1TV TG recursive identification and stochastic adaptive control.
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