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BIBO Stability of Linear Switching Systems

György Michaletzky and László Gerencsér

Abstract—In this note, we show that for linear switching systems of the
form = + , where the matrices are chosen ar-
bitrarily from a given set of matrices, bounded-input–bounded-output sta-
bility implies uniform exponential stability.

Index Terms—Bounded-input–bounded-output (BIBO) stability,
switching systems, uniform exponential stability.

I. INTRODUCTION

Suppose that we are given a set of realp � p matrices
A = fA
 j
 2 �g, where� is an arbitrary set of indexes. Con-
sider theswitching linear system

x(n+ 1) = A�(n)x(n) + u(n+ 1) (1.1)

wherex(0) 2 p, �: [0; 1; . . .) ! � is an arbitraryswitching signal,
while u(1); u(2); . . . ;2 p is an input signal. The problem of finding
conditions for various kinds of stability of the system above has re-
ceived a fair amount of attention recently, both for discrete-time and
continuous-time systems.

A number of papers focused on finding appropriate switching
strategy in order to stabilize the system; see, e.g., [9], [10], and [15].
Another line of research is to characterize systems which are asymp-
totically stable for any arbitrary switching signal�; see, e.g., [5], [7],
[8], [12], and [13]. In [1] and [6], Lie-algebraic conditions are given
implying the existence of a common quadratic Lyapunov-function.
Dayawansa and Martin [3] proved that for compact linear polysystems
uniform asymptotic stability implies the existence of a common
Lyapunov function, which is not necessarily quadratic. Their proof is
carried out for continuous-time systems, but without too much effort
it works for discrete-time systems, as well.

Stability of switching systems is an important technical issue in re-
cursive identification and stochastic adaptive control. In the context of
recursive identification, the estimated inverse system is time varying
and the set of inverse systems should be restricted so that the stability
of the time varying system is ensured. Assuming that the inverse plants
can be described by finite-dimensional systems with fixed dimension
the problem reduces to finding conditions under which the response of
a time-varying linear system exited by a signal which is bounded in
a certain stochastic sense, stays bounded in a certain stochastic sense.
Such a condition is given in [4, Condition 4.2], where the existence of
a joint quadratic Lyapunov function is assumed. In the light of the re-
sults of the work of [3], this condition is obviously too restrictive. The
question arises as to what extent can [4, Condition 4.2] be relaxed. Sim-
ilar problems arise in stochastic adaptive control, where the controller
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is time-varying, and the set of controllers should be restricted so that
the stability of the time-varying closed-loop system is ensured for any
choice of the controller.

In this note, the following closely related result will be proved: as-
sume that for any arbitrary switching path� the linear time-varying
system (1.1) is bounded-input–bounded-output (BIBO) stable in the
sense that for any bounded input sequenceu(j), j � 1, the output se-
quencex(j), j � 0 is bounded, as well. Then the homogeneous linear
switching-system is exponentially stable in a sense to be defined later.

II. BIBO STABILITY

Denote by p

1 the set of infinite sequences ofp-dimensional vectors,
and bylp1 the set of norm-bounded infinite sequences ofp-dimensional
vectors.

For any switching path�: [0; 1; . . .) ! �, let us denote byT� the
linear operator for which

T�(x(0); u(1); u(2); . . .) = (x(0); x(1); x(2); . . .) (2.1)

where the sequencex(j), j � 0 is generated by

x(n+ 1) = A�(n)x(n) + u(n+ 1)

from the initial vectorx(0). Obviously

T�:
p

1 ! p

1:

Note that introducing the initial conditionx(�1) = 0 we obtain that
x(0) can be considered asu(0) = x(0). Using this,T� can be written
shortly as

T�u = x

whereu = (u(0); u(1); . . .), x = (x(0); x(1); . . .).
Definition 2.1: The switching system (1.1) determined by the set

A = fA
 j
 2 �g � p�p

is BIBO stable, if, for any switching path�, the linear operatorT�
maps bounded input sequences into bounded output sequences. In other
words

T� (l
p

1) � l
p

1:

Definition 2.2: The switching system (1.1) is uniformly exponen-
tially stable, if there exist a� < 1 and c < 1, such that for any
switching path� and for the identically zero inputu(j) = 0, j � 1,
the norm of the output sequencex(n), n � 0 defined by the (1.1) can
be bounded above as follows:

kx(n)k � c�
nkx(0)k:

Uniform BIBO stability of linear, time-varying systems are ana-
lyzed, for example, by Rugh [11] in the continuous-time case. Some
of the results of [11] could be used here to make the proofs a bit
shorter, but for sake of convenience complete, self-contained proofs
are presented here.

Theorem 2.1:The switching system (1.1) is BIBO stable if and only
if it is uniformly exponentially stable.

Proof: The uniform exponential stability obviously implies the
BIBO stability due to the trivial upper bound

kx(n)k �kA�(n�1)A�(n�2) � � �A�(0)x(0)k
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+

n

j=1

kA�(n�1) � � �A�(j)u(j)k

�c�nkx(0)k+

n

j=1

c�
n�jku(j)k

�c kx(0)k+
�

1� �
sup
j�1

ku(j)k

�c
1

1� �
sup
j�0

ku(j)k

for all n � 0.
Conversely, let us assume that the system (1.1) is BIBO stable. First,

we show that for anyfixedswitching path� the operatorT� is bounded
on the Banach-spacelp1. In fact, due to itsfinite structure, i.e., the
value ofx(n) depends only on the values of finitely many input vectors,
namely onu(1); . . . ; u(n) and the initial conditionx(0), it is easy to
see that it is aclosedoperator. Since it is defined on the whole Banach-
spacelp1 it should be continuous. Denote its norm by

K� = kT�k:

Now, fix a switching path� and an initial conditionx(0) and de-
fine the inputu(j) = 0, if j � 1. Denote the corresponding output
sequence byx�(n)

x
�(0) =x(0)

x
�(n) =A�(n�1)A�(n�2) � � �A0x(0):

Then, the inequality

kx�(n)k � K�kx(0)k

holds. Thus,x�(n) is a bounded sequence. Let us use this sequence as
a new input sequence, in other words apply the operatorT� again. We
obtain again a bounded sequence, thus the operatorT� can be applied
again. Therefore, the following recursive definition will be used:

z
�
0 (0) =x(0) (2.2)

z
�
0 (n) =x

�(n) (2.3)

z
�
k (0) =x(0) (2.4)

z
�
k (n+ 1) =A�(n)z

�
k (n) + z

�
k�1(n+ 1)

k �1; n � 0: (2.5)

Since the sequence(z�k (0); z
�
k (1); z

�
k (2); . . .) is obtained from the se-

quence(x(0);0; 0; . . .) applying the operatorT� k + 1 times, i.e.,

z
�
k = (T�)

k+1
x

wherez�k = (z�k (0); z
�
k (1); . . .), x = (x(0);0; 0; . . .) it follows that

kz�k (n)k � (K�)
k+1 kx(0)k: (2.6)

The following lemma will be used to set a lower bound forz�k (n).
Lemma 2.1: We have

z
�
k (n) =

k + n

k
x
�(n): (2.7)

Proof: We prove the lemma by induction with respect tok andn.
Fork = 0 andn arbitrary (2.7) holds by definition. Similarly, ifn = 0
andk is arbitrary (2.7) holds again.

Now, let us fixk andn, and assume that (2.7) is true forz�j (l), if
j < k andl � 0 and if j = k andl � n. We are going to show that it
holds forz�k (n + 1), as well. In fact

z
�
k (n+ 1) =A�(n)z

�
k (n) + z

�
k�1(n+ 1)

=
k + n

k
A�(n)x

�(n)

+
k � 1 + n+ 1

k � 1
x
�(n+ 1)

=
k + 1+ n

k
x
�(n+ 1)

using the identitiesx�(n + 1) = A�(n)x
�(n) and

n+ k

k
+

n+ k

k � 1
=

n+ k + 1

k
. Keepingk fixed it follows from the

induction step that (2.7) holds for alln. Now, changek to k + 1.
Equation (2.7) holds forn = 0, consequently the induction step with
respect ton can be applied again. This concludes the proof of the
lemma.

From (2.6) and (2.7), it follows that

kx�(n)k �
(K�)

k+1

k + n

k

kx0k (2.8)

for anyk � 0. Consequently, the sequencekx�(n)k tends to zero with
more than any polynomial speed. We show that the rate of convergence
is in fact exponentially fast.

Note that (2.8) can be expressed in the following manner:

kA�(n�1)A�(n�2) � � �A�(0)k �
(K�)

k+1

k + n

k

(2.9)

for anyk � 0.
Now, working along the same switching path�, consider a vector

x 2 p and fix an indexj � 1. Excite (1.1) by the impulse

uj;x(n) =
0; if n 6= j

x; if n = j.

Observe that the initial condition is defined asx(0) = u(0) = 0.
Repeating the same construction as previously shown , we obtain

that

kA�(n+j�1)A�(n+j�2) � � �A�(j)k �
(K�)

k+1

k + n

k

(2.10)

for anyk � 0.
Introduce the following notation:

��(n) = sup
j�0

kA�(n+j�1)A�(n+j�2) � � �A�(j)k (2.11)

for n � 1.
Lemma 2.2: ��(n) tends to zero exponentially fast, say

��(n) � c��
n
� : (2.12)

with some0 < c� < 1, 0 < �� < 1.
Proof: The propertykABk � kAkkBk implies that

��(n+m) � ��(n)��(m) (2.13)

and, thus,log��(n) is a subadditive function. Furthermore, (2.10) im-
plies thatlog��(n) tends to�1. Now it is well known (see [14]) that

lim
1

n
log��(n) = inf

1

n
log��(n) < 0

which implies the claim.
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It remains to prove thatc� and�� can be chosen uniformly with
respect to the switching path.

Let us observe that to this aim it is enough to show that

K = sup
�

K� <1 (2.14)

where the supremum is taken with respect to all switching paths�.
Remark: Note that (2.14) means by definition thatA is product-

bounded. (see [2]).
Indeed, repeating the arguments in the proof of Lemma 2.1 for any

switching path usingK instead ofK�, we get for

�(n) = sup
�

sup
j�0

kA�(n+j�1)A�(n+j�2) � � �A�(j)k

the upper bound

�(n) �
Kk+1

k + n

k

(2.15)

for anyk � 0. Now, repeating the arguments in the proof of Lemma
2.2 we get�(n) converges to zero exponentially fast, and this is the
statement of the theorem.

To prove (2.14) an indirect argument will be applied. Assume
that there is no universal bound for the operatorsT� . Then, for any
sequenceck, k � 1 tending to infinity we can find a sequence of
switching paths�k and input sequencesuk = (uk(0); uk(1); . . .)
with supj�0 kuk(j)k � 1 such that for the responsesxk defined by

xk = T�(k)uk

we have thatsupn�0 kxk(n)k > ck. Without violating this property
we can also assume that for some finitenk we haveuk(j) = 0 for
j � nk and

kxk(j)k > ck; for some1 � j < nk:

Also, without loss of generality, we might defineuk(j) = 0, for j < 0.
Assume now that a sequenceck tending to infinity isgivenand define

a sequence of time indexesN(k) = n1 + � � �+ nk, k � 1,N(0) = 0
and the input sequence

u(j) =

1

k=0

�k+1uk+1(j �N(k)); j � 0

where�k+1 = 0 or 1 to be specified later. Note that for a fixedj only
one summand can be different from zero. Obviously,supj�0 ku(j)k �
1.

Let us now form the switching path� concatenating�k,k � 1 taken
on the interval0; . . . ; nk � 1. In other words

� = (�1(0); . . . ; �1(n1 � 1); �2(0); . . . ; �2(n2 � 1); �3(0); . . .) :

We show that we can choose�k, k � 1 recursively so that

x = T�u

will be an unbounded sequence. Observe thatx(j), j � N(k) depends
only on�j , uj and�j , j � k.

Assume now that�l has been constructed forl � k. Set

vk(j) =

k�1

l=0

�l+1ul+1(j �N(l)); j � 0

and

zk = T�vk:

Then, forN(k) < j � N(k + 1)

x(j) = zk(j) + xk+1(j �N(k))�k+1:

Now, if

sup
N(k)<j�N(k+1)

kzk(j)k>
ck+1

2

then we set�k+1 = 0. Otherwise, take�k+1 = 1. In both cases

sup
N(k)<j�N(k+1)

kx(j)k �
ck+1

2

holds. Continuing this way we can construct an unbounded response
sequencex generated by a bounded input sequence, contradicting to
the BIBO assumption.

Thus, (2.14) holds, concluding the proof of the theorem.
It is worth formulating an immediate consequence of the theorem as

a separate corollary.
Corollary 2.1: If the switching system determined by the set of ma-

tricesA = fA
 j
 2 �g is BIBO stable, then there exists a� < 1 such
that all eigenvalues of the matricesA
 are less than or equal to�, i.e.,

j�max(A
)j � �

where�max(A) denotes the eigenvalue of the matrixA which has the
largest absolute value.

Proof: This is immediate from the observation that choosing the
switching path� to be identically
 and vanishing the input from the
previous theorem, we obtain that

kAn

k � c�

n

proving the corollary.

III. CONCLUSION

We have proved that BIBO stability of a switching linear system im-
plies that it is uniformly exponentially stable. It follows, using a result
of Dayawansa and Martin, that the family of transition matrices have
a joint, not necessarily quadratic, Lyapunov function. The extension of
this result to BIBO stability in a stochastic sense is an open problem,
the solution of which would resolve a fundamental technical issue in
recursive identification and stochastic adaptive control.
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