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Exploration vs. Exploitation

� Two treatments

� Unknown success 
probabilities

� Goal:
� find the best treatment 
while losing the 
smallest number of 
patients

� Explore or exploit?



Playing Bandits

� Payoff is 0 or 1

� Arm 1:

X11, X12, X13, X14, X15, X16, X17, …

� Arm 2:

X21, X22, X23, X24, X25, X26, X27, …

0

1 1 0

1 0

1 1 1

0



Exploration vs. Exploitation: 

Some Applications

� Simple processes:
� Clinical trials

� Job shop scheduling (random jobs)

� What ad to put on a web-page

� More complex processes (memory):
� Optimizing production

� Controlling an inventory

� Optimal investment

� Poker



Bandit Problems –
“Optimism in the Face of Uncertainty”

� Introduced by Lai and Robbins (1985) (?)

� i.i.d. payoffs 
� X11,X12,…,X1t,…

� X21,X22,…,X2t,…

� Principle:
� Inflated value of an option =
maximum expected reward that looks “quite”
possible given the observations so far

� Select the option with best inflated value



Some definitions

� Payoff is 0 or 1

� Arm 1:

X11, X12, X13, X14, X15, X16, X17, …

� Arm 2:

X21, X22, X23, X24, X25, X26, X27, …

0

1 1 0

1 0

1 1 1

0

Now: t=11
T1(t-1) = 4
T2(t-1) = 6
I1 = 1, I2 = 2, …

R̂n
def

=
∑n

t=1Xk∗,t −
∑n

t=1XIt,TIt (t)



Parametric Bandits [Lai&Robbins]

� Xit ∼ pi,θi
(·), θi unknown, t=1,2,…

� Uncertainty set:
“Reasonable values of θ given the 
experience so far”

Ui,t={θ | pi,θ (Xi,1:Ti(t)) is “large” mod (t,Ti(t)) }

� Inflated values:
Zi,t=max{ Eθ | θ∈ Ui,t }

� Rule:
It = arg maxi Zi,t



Bounds

� Upper bound:

� Lower bound:
If an algorithm is uniformly good then..



UCB1 Algorithm (Auer et al., 2002)

� Algorithm: UCB1(b)
1. Try all options once

2. Use option k with the highest index:

� Regret bound:
� Rn: Expected loss due to not selecting the 

best option at time step n. Then:



Problem #1

When b2≫ σ2, regret should 
scale with σ2 and not b2!



UCB1-NORMAL

� Algorithm: UCB1-NORMAL
1. Try all options once

2.Use option k with the highest index:

� Regret bound:

µ̂kt +
√
16σ̂2kt

log(t)
Tk(t−1)



Problem #1

� The regret of UCB1(b) scales with O(b2)

� The regret of UCB1-NORMAL scales with 
O(σ2)

… but UCB1-NORMAL assumes normally 
distributed payoffs

� UCB-Tuned(b):

� Good experimental results

� No theoretical guarantees

µ̂kt +
√
min

(
b2

4 , σ̃
2
kt

) log(t)
Tk(t−1)



UCB-V

� Algorithm: UCB-V(b)
1. Try all options once

2.Use option k with the highest index:

� Regret bound:

µ̂kt +
√
2.4σ̃2kt

log(t)
Tk(t−1)

+ 3b log(t)
Tk(t−1)



Proof

� The “missing bound” (hunch.net):

� Bounding the sampling times of 
suboptimal arms (new bound)

|µ̂t − µ| ≤
√

σ̃t log(3δ−1)
t

+ 3b log(3δ−1)
t



Can we decrease exploration?

� Algorithm: UCB-V(b,ζ,c)
1. Try all options once

2.Use option k with the highest index:

� Theorem:
� When ζ<1, the regret will be polynomial for 
some bandit problems

� When cζ<1/6, the regret will be polynomial for 
some bandit problems

µ̂kt +
√
2ζσ̃2kt

log(t)
Tk(t−1)

+ c 3b log(t)
Tk(t−1)



Concentration bounds

� Averages concentrate:

� Does the regret of UCB* concentrate?

∣∣Sn
n
− µ

∣∣ ≤ O
(√

log(δ−1)
n

)

∣∣Rn

n
− µ

∣∣ ≤??
RISK??RISK??∣∣∣ Rn

E[Rn]
− 1

∣∣∣ ≤??



Logarithmic regret implies high risk

� Theorem:
Consider the pseudo-regret

Rn = ∑k=1
K Tk(n) ∆k.

Then for any ζ>1 and z>γ log(n),

P(Rn>z)≤ C z-ζ

(Gaussian tail:P(Rn>z)≤ C exp(-z2))

� Illustration:
� Two arms; ∆2 = µ2-µ1>0.

� Modes of law of Rn at O(log(n)), O(∆2n)!  
Only happens when the support of the second best
arm’s distribution overlaps with that of the optimal arm



Finite horizon: PAC-UCB

� Algorithm: PAC-UCB(N)
1. Try all options ones

2.Use option k with the highest index:

� Theorem:
� At time N with probability 1-1/N, suboptimal 
plays are bounded by O(log(K N)).

� Good when N is known beforehand

µ̂kt +

√

2σ̃2kt
Lt

Tk(t− 1)
+

3bLt
Tk(t− 1)

,

Lt = log(NK(Tk(t− 1) + 1))



Conclusions

� Taking into account the variance lessens 
dependence on the a priori bound b

� Low expected regret => high risk

� PAC-UCB: 
� Finite regret, known horizon, exponential  
concentration of the regret

� Optimal balance? Other algorithms?

� Greater generality: look up the paper!



Thank you!

Questions?
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