
Continuous Time Associative Bandit Problems∗

András György1 and Levente Kocsis1 and Ivett Szabó1,2 and Csaba Szepesvári1,3
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Abstract
In this paper we consider an extension of the multi-
armed bandit problem. In this generalized setting,
the decision maker receives some side information,
performs an action chosen from a finite set and then
receives a reward. Unlike in the standard bandit
settings, performing an action takes a random pe-
riod of time. The environment is assumed to be sta-
tionary, stochastic and memoryless. The goal is to
maximize the average reward received in one unit
time, that is, to maximize the average rate of return.
We consider the on-line learning problem where
the decision maker initially does not know anything
about the environment but must learn about it by
trial and error. We propose an “upper confidence
bound”-style algorithm that exploits the structure
of the problem. We show that the regret of this al-
gorithm relative to the optimal algorithm that has
perfect knowledge about the problem grows with
the number of decisions n at a rate Õ(log n), that
is, only slightly faster than the optimal logarithmic
rate, and scales polynomially with the parameters
of the problem.

1 Introduction
Multi-armed bandit problems find applications in various
fields, such as statistics, control, learning theory or eco-
nomics. They became popular with the seminal paper by
Robbins [1952] and since then they enjoy perpetual popular-
ity.

The version of the bandit problem we consider here is mo-
tivated by the following example: Imagine that a sequence
of tasks arrive for processing in a computer center that has
a single supercomputer. For each of the tasks a number of
alternative algorithms can be applied to. Some information
about the tasks is available that can be used to predict which
of the algorithms to try. The processing time depends on the
task at hand and also on the algorithm selected and may take
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continuous values, hence the time instants when the decisions
can take place take continuous values, too. The supercom-
puter has a fixed cost of running, whilst the centre’s income
is based on the quality of solutions delivered. At any given
time only a single task can be executed on the supercomputer.
Admittedly, this assumption looks absurd at the first sight in
the context of our example, however, we think that our results
can be extended to the more general case when the number of
algorithms that can run simultaneously is bounded by a con-
stant without much trouble. Hence we decided to stick to this
simplifying assumption.

An allocation rule decides, based on the side information
available about the task just received, which algorithm to use
for processing it, the goal being to maximize the return rate.
Note that this criterion is different from maximizing the total
reward. In fact, since processing a task takes some time dur-
ing which no other tasks can be processed, the rate maximiza-
tion problem cannot be solved by selecting the algorithm with
the highest expected payoff: Some tasks may look so difficult
to solve that the best thing could be to drop them, which re-
sults in no payoff, but in exchange the learner does not suffer
any loss due to not processing other, possibly more rewarding
tasks. (Note that this would not be possible without the pres-
ence of side information; in the latter case the problem would
simplify to the usual multi-armed bandit problem where one
needs to find the best option with highest reward rate.) This
example illustrates that a learner whose aim is to quickly learn
a good allocation strategy for rate maximization must solve
two problems simultaneously: Predicting the long-term val-
ues of the available algorithms given the information about
the task to be processed and balancing exploration and ex-
ploitation so that the loss due to selecting inferior options
(i.e., the regret) is kept at minimum. The problem we con-
sider can be thought of as a minimalistic example where the
learner faces these two problems simultaneously.

Bandit problems in continuous time have been studied ear-
lier by a number of authors (see e.g. [Kaspi and Mandel-
baum, 1998; Karoui and Karatzas, 1997] and the references
therein). These earlier results concern the construction of op-
timal allocation policies (typically in the form of Gittins in-
dexes) given some parametric form of the distributions of the
random variables involved. In contrast, here we consider the
agnostic case when no particular parametric form is assumed,
but the environment is supposed to be stationary and stochas-
tic. The agnostic (or non-parametric) case has been studied



extensively in the discrete time case. In fact, this problem
was first considered by Robbins [1952], who introduced a
certainty-equivalence rule with forcing. In the same article
Robbins showed that this rule is asymptotically consistent in
the sense that the frequency of the time instants when the best
arm is selected converges to one almost surely. More recently,
Agrawal [1995] suggested a number of simple sample-mean
based policies and showed that the resulting policies’ regret
after n decisions is O(log n). Since it is known that no al-
location rule can achieve regret lower than Cp log n for an
appropriate (problem dependent) constant Cp [Lai and Rob-
bins, 1985], Agrawals’ policies are unimprovable apart from
constant factors. Lately, Auer et al. [2002] strengthened
these results by suggesting policies that achieve logarithmic
regret uniformly over time, rather than just asymptotically.
An added benefit of their policies is that they are simple to
implement.

We base our algorithm on algorithm UCB1 from [Auer et
al., 2002] (see also [Agrawal, 1995]). We assume a stationary
memoryless stochastic environment, where the side informa-
tion is an i.i.d. process taking values in a finite set, the payoff-
delay sequences are jointly distributed for any of the options
and their distribution depends on the side information (the
precise assumptions will be listed in the next section). Like
UCB1, our algorithm decides which option to choose based
on sample-means corrected by upper confidence bounds. In
our case, however, separate statistics are kept for all option -
side-information pairs. Our main result shows that the result-
ing policy achieves an almost logarithmic regret uniformly in
time: the growth rate of the regret can be arbitrarily close to
the theoretically unimprovable logarithmic rate, but it is not
able to achieve it.

The paper is organized as follows: We define the problem
and the proposed algorithm in Section 2. Our main result, a
logarithmic regret bound on the algorithm’s performance is
presented in Section 4. Conclusions are drawn in Section 5.

2 The algorithm
The problem of the previous section is formalized as fol-
lows: Let K denote the number of options available, and let
X denote the set of possible values of the side information,
which is assumed to be finite. Let x1, x2, . . . , xt be a ran-
dom sequence of covariates representing the side information
available at the time of the t-th decision, generated indepen-
dently from a distribution p supported on X . At each deci-
sion point the decision maker may select an option It from
A = {1, . . . ,K} and receives reward rt = rIt,t(xt), where
rit(xt) is the reward the decision maker would have received
had it chosen option i. Unlike in classical bandit problems the
collection of the reward takes some random time. When op-
tion i is selected and the side information equals x, this time is
δit(x). We assume that for any fixed x and i, (rit(x), δit(x))
is an i.i.d. sequence, independent of {xt}. We further as-
sume that rit(x) ∈ [rmin, rmax], δit(x) ∈ [δmin, δmax] with
δmin > 0. (We expect that the boundedness assumptions can
be relaxed to δit(x) ≥ 0 and appropriate moment conditions
on δit(x) and rit(x).) Let

ri(x) = E [ri1(x)]
and

δi(x) = E [δi1(x)]

denote the expected reward and delay, respectively, when op-
tion i is chosen at the presence of the side-information x.

The exact protocol of decision making is as follows: De-
cision making happens in discrete trials. Let τ0 = 0 and
let τt denote the time of the beginning of the t-th trial. At
the beginning of the tth trial the decision maker receives the
side information xt. Based on the value of xt and all infor-
mation received by the decision maker at prior trials, the de-
cision maker must select an option It. Upon executing It,
the decision maker receives a reward rt = rIt,t(xt) and suf-
fers a delay δt = δIt,t(xt). That is, the next time point
available when the decision maker can select an option is
τt+1 = τt + δIt,t(xt).

The goal of the decision maker is to find a good allocation
policy. Formally, an allocation policy maps possible histories
to some index in the set A. The gain (average reward rate)
delivered by an allocation policy u is given by

λu = lim sup
n→∞

E [
∑n

t=1 ru
t ]

E [
∑n

t=1 δu
t ]

,

where {ru
t } is the reward sequence and {δu

t } is the delay se-
quence experienced when policy u is used. An optimal allo-
cation policy is one that maximizes this gain. Note that the
problem as stated is a special case of semi-Markov decision
problems [Puterman, 1994]. The theory of semi-Markov de-
cision problems furnishes us with the necessary tools to char-
acterize optimal allocation policies: Let us define the optimal
gain by

λ∗ = sup
u

λu.

A policy u is said to be optimal if it satisfies λ∗ = λu. It
follows from the generic theory that there exist determinis-
tic stationary policies that are optimal. An optimal action for
some x ∈ X can be determined by ordering the options by
their relative values. The relative value of option i upon ob-
serving x is the expected reward that can be collected minus
the expected reward that is not gained during the time it takes
to collect the reward:

q∗i (x) = ri(x)− δi(x)λ∗.

Intuitively it should be clear that a policy that always selects
options with best relative values should optimize the over-
all gain. In fact, it follows from the theory of semi-Markov
decision problems that this is indeed the case. A stationary
deterministic policy u : X → A is optimal if and only if it
obeys the constraints

ru(x)(x)− δu(x)(x)λ∗ = max
i∈A

[ri(x)− δi(x)λ∗] (1)

simultaneously for all x ∈ X .
The (total) regret of an allocation policy is defined as the

loss suffered due to not selecting an optimal option in each
time step. Since we are interested in the expected regret only,
our regret definition uses the optimal gain λ∗:

Rn = λ∗
n∑

t=1

δt −
n∑

t=1

rt.

The value of the first term is the maximum reward that could
be collected during the time of the first n decisions. The ex-
pected regret thus compares the expected value of the latter



with the expected value of the actual total payoffs received.
It follows that an allocation policy that minimizes the regret
will optimize the rate of return.

When δit(x) = 1, and X has a single element, the problem
reduces to the classical stochastic bandit problem. Since for
the stochastic bandit problems the regret is lower bounded by
O(log n), we are seeking policies whose regret grows at most
at a logarithmic rate.

The idea underlying our algorithm is to develop upper
estimates of the values q∗i (x) with appropriate confidence
bounds. Just like in [Auer et al., 2002], the upper confi-
dence estimates are selected to ensure that for any given x
with p(x) > 0 all options are ultimately selected infinitely
often, but at the same time suboptimal options are selected
increasingly rarely.

The algorithm is as follows: Let us consider the t-th deci-
sion. If we had a good estimate λt of λ∗, then for any given
x we could base our decision on the estimates of the relative
values q∗i (x) of the options given by rit(x)− δit(x)λt. Here
rit(x) denotes the average of rewards during the first n deci-
sions for those time points when the side information is x and
option i was selected, and δit(x) is defined analogously:

rit(x) =
1

Ti(x, t)

t∑
s=1

I (Is = i, xs = x) rs,

δit(x) =
1

Ti(x, t)

t∑
s=1

I (Is = i, xs = x) δs,

where Ti(x, t) denotes the number of times option i was
selected when side information x was present in trials
1, 2, . . . , t:

Ti(x, t) =
t∑

j=1

I (It = i, xt = x) .

The plan is to combine appropriate upper bounds on ri(x)
and lower bounds on δi(x) based on the respective sample
averages rit(x), δit(x) and Ti(x, t), to obtain an upper es-
timate of q∗i (x). However, in order to have a sample based
estimate, we also need an appropriate lower estimate of λ∗.
This estimate is defined as follows:

Let pt(x) be the maximum-likelihood estimate of the den-
sity over X : pt(x) = 1/t

∑t
s=1 I (xs = x). Let U denote the

set of stationary policies: U = {u|u : X → A}. Pick any
u ∈ U . Clearly, the gain of u satisfies

λu = ru/δu,

where

ru =
∑
x∈X

p(x)ru(x)(x),

δu =
∑
x∈X

p(x)δu(x)(x).

We compute the the empirical estimate of the gain of policy
u from the empirical estimates of p(x), ri(x) and δi(x):

ru
t =

∑
x∈X

pt(x)ru(x),t(x), δ
u

t =
∑
x∈X

pt(x)δu(x),t(x),

and λ
u

t =
ru

t

δ
u

t

.

Then uUCB
t , the estimate of u∗ is defined by

uUCB
t = argmax

u∈U
(λ

u

t + ct(u)).

Here ct(u) is an appropriate confidence bound that is selected
such that simultaneously for all policies u ∈ U , λ

u

t is in the
ct(u)-vicinity of λu with high probability. This sequence will
be explicitly constructed during the proof where we will also
make sure that it depends on known quantities only. In words,

λ
uUCB

t

t is the optimal gain that the decision maker can guar-
antee itself with high probability given the data seen so far.

In our proposed allocation policy, we ensure that each ac-
tion is sampled sufficiently often for each value of side infor-
mation: If Ti(xt, t − 1) < At for some action i ∈ A and a
deterministic function At to be defined later, then It is chosen
to be the most undersampled action, otherwise It is chosen
according to uUCB

t−1 (xt). That is,

It =



argmini∈A Ti(xt, t− 1) if Tj(xt, t− 1) < At

for some j ∈ A (ties are
broken arbitrarily);

uUCB
t−1 (xt), if Ti(xt, t− 1) ≥ At

for all i ∈ A.
(2)

3 Some useful lemmata
Let F1 ⊂ F2 ⊂ F3 ⊂ . . . be an increasing sequence of σ-
algebras.

Lemma 1 (Corollary 16 in [Cesa-Bianchi et al., 2004])
Assume that {Xs} is a bounded martingale difference
series with filtration {Fs}, −K ≤ Xs ≤ K for all s.
Let Mt =

∑t
s=1 Xs be the associated martingale and

Vt =
∑t

s=1 E
[
X2

s | Fs−1

]
be the predictable variance of the

process. Then for all ε > 0,

P

(
Mt ≥

√
2(Vt + K2) log(t/ε) +

√
2

3
K log(t/ε)

)
≤ ε.

Corollary 2 Let Is ∈ {0, 1}, |Zs| ≤ K be Fs measurble
rndom variables, and assume that E [IsZs|Fs−1] = 0. Let
Mt =

∑t
s=1 IsZs, Tt =

∑t
s=1 Is. Then for all ε > 0, t > 0,

P
(

Mt

Tt
> Kφ(t, Tt, ε)

)
≤ ε, (3)

where

φ(t, T, ε) =

√
2(1 + 1

T ) log(t/ε)
T

+
√

2
3

log(t/ε)
T

. (4)

Proof. Let Xs = IsZs. Then Xs is a bounded martingale
difference series. Observe that E

[
X2

s | Fs−1

]
≤ K2Is and

hence Vt ≤ K2Tt. Hence,

P

(
Mt ≥

√
2(Vt + K2) log(t/ε) +

√
2

3
K log(t/ε)

)
≥

P
(
Mt ≥ K

√
2(Tt + 1) log(t/ε) +

√
2

3 K log(t/ε)
)

and the result follows by Lemma 1. ut



Corollary 3 For all ε > 0, t > 0 the following inequalities
hold:

P (rit(x)− ri(x) > rmaxφ(t, Ti(x, t), ε)) ≤ ε,

P (ri(x)− rit(x) < rmaxφ(t, Ti(x, t), ε)) ≤ ε,

P
(
δit(x)− δi(x) > δmaxφ(t, Ti(x, t), ε)

)
≤ ε,

P
(
δi(x)− δit(x) < δmaxφ(t, Ti(x, t), ε)

)
≤ ε,

where φ is defined by (4).
Proof. Use Corollary 2 with Is = I (xs = x, Is = i),
Zs = rs − ri(x), Fs−1 = σ(xs, rs−1, xs−1, . . .).
Since Xs = (rs − ri(x))I (xs = x, Is = i) =
(rIs,s(xs) − ri(x))I (xs = x, Is = i) = (ri,s(x) −
ri(x))I (xs = x, Is = i), we have E [Xs | Fs−1] =
I (xs = x, Is = i) E [ri,s(x)− ri(x) | Fs−1]. By the as-
sumed properties of the random sequence {ri,s(x)}s≥1 this
expectation is indeed zero. Hence the conditions of the
Corollary are satisfied. Hence (3) yields the first part of the
result. The second part follows by symmetry. The analogous
inequalities for δit can be shown similarly. ut

Finally, we shall use the following lemma due to [Weiss-
man et al., 2003] which avoids a polynomial factor as a func-
tion of the number of samples:
Lemma 4 ([Weissman et al., 2003], Theorem 2.1) Let
x1, . . . , xt ∼ p be an i.i.d. sequence taking values on a finite
set X . Let pt(x) = 1

t

∑t
s=1 I (xs = x) be the empirical

distribution underlying x1, . . . , xt. Then

P (‖p− pt‖1 ≥ ε) ≤ (2|X | − 2) exp(−tε2/2).

Note that here we simplified the result of [Weissman et
al., 2003] to fit our purposes better (the exponential rate in
[Weissman et al., 2003] depends on the distribution, p).

Now, we are ready to prove the following:
Lemma 5 Pick any policy u, and for any ε > 0 define

ct(u) =
rmax

δmin

(
1 +

δmax

δmin

)
φ0(t, u, ε), (5)

where

φ0(t, u, ε) = φ1(t, u, ε) + φ2(t, ε),

φ1(t, u, ε) =
∑
x∈X

pt(x)φ(t, Tu(x)(x, t), ε1),

φ2(t, ε) =

√
2 (|X | log(2) + log(1/ε1))

t
,

ε1 = ε/(2|X |+ 1).

Then with probability at least 1−ε, the following inequalities
hold, individually:

ru
t

δ
u

t

− λu ≤ ct(u),

λu − ru
t

δ
u

t

≤ ct(u)

Proof. By straightforward algebra, we get

ru
t

δ
u

t

− λu =
ru

t δu − ruδu + ruδu − ruδ
u

t

δuδ
u

t

≤ 1
δmin

(ru
t − ru)+ +

rmax

δ2
min

(δu − δ
u

t )+.

Let us bound ru
t − ru:

ru
t − ru =

∑
x

pt(x)ru(x),t(x)−
∑

x

p(x)ru(x)(x)

=
∑

x

pt(x)(ru(x),t(x)− ru(x)(x))

+
∑

x

(p(x)− pt(x))ru(x)(x)

≤
∑

x

pt(x)(ru(x),t(x)− ru(x)(x))

+rmax

∑
x

|p(x)− pt(x)|.

Now Lemma 4 can be used to construct a bound the second
term, whilst Corollary 3 can be used to construct a bound for
the first term. The term δu−δ

u

t can be bound in an analogous
way. Altogether, we need (2|X |+ 1) bounds to hold simulta-
neously, hence we use ε1 = ε/(2|X |+1) in these bounds. ut

4 Main result
Our main result is the following bound on the expected regret:

Theorem 6 Let At = log tf(t) such that limt→∞ f(t) = ∞
and limt→∞At/t = 0, and let ct(u) be defined by (5) with
ε = εt = 1/t2. Then the regret of algorithm (2) is bounded
as

E[Rn] ≤ O(An).

Remark 7 Note that the above bound shows that the algo-
rithm can achieve a regret fo order Õ(log n), that is, it can
get arbitrarily close to the optimal O(log n) rate, but it is not
able to achieve it.

Proof. The proof follows similar lines to that of Theorem 1
of [Auer et al., 2002]. Let

U∗(x) = {i ∈ A : q∗i (x) = max
j∈A

q∗j (x)},

and for each i and x, let

u(x, i, t) = argmax
u∈U :u(x)=i

λ
u

t + ct(u)

Then

E [Rn]

=
n∑

t=1

(δtλ
∗ − rt)

≤
n∑

t=1

(
δmax

rmax

δmin
− rmin

)
P (It 6∈ U∗(xt))

=
n∑

t=1

(
δmax

rmax

δmin
− rmin

)∑
x∈X

p(x)P (It 6∈ U∗(x))

≤
n−1∑

t=An

(
δmax

rmax

δmin
− rmin

)∑
x∈X

{
p(x) ·

∑
i 6∈U∗(x)

P
(
λ

u(x,i,t)

t + ct(u(x, i, t)) ≥ λ
∗
t + ct(u∗)

)}
.



Now the probability term can be bounded by the union
bound, for any policy u, as

P
(
λ

u

t + ct(u) ≥ λ
∗
t + ct(u∗)

)
≤ P

(
λ

u

t − λu > ct(u)
)

+ P
(
λ
∗
t − λ∗ > ct(u∗)

)
+P
(
λ∗ − λ

u

t < 2ct(u)
)

≤ 2ε + P (λ∗ − λu < 2ct(u))

where in the last step we used Lemma 5. Assume that the
side information x is observed T (x, t) times by trial t. If
T (x, t) > |A|At, then then Ti(x, T ) ≥ At for all i ∈ A,
as the algorithm enforces a minimal numer of trials for each
option. Then

ct(u) ≤ rmax

δmin

(
1 +

δmax

δmin

)
(φ(t, At, ε/(2|X |+ 1)) + φ2(t))

(6)
thus λ∗ − λu ≥ minu∈U :λ∗>λu λ∗ − λu > 2ct(u) if At ≥
C log t where C is a suitable positive constant. This inequal-
ity is satisfied for sufficiently large t (t = O(At)) as At =
log tf(t) where f(t) →∞ as t →∞. On the other hand, (6)
holds simultaniously for all u ∈ U if T (x, t) ≥ |A|At for all
x. For sufficiently large t, this holds with probability at most
1− ε, as Hoeffding’s inequality implies

P (T (x, t) < At)

< P
(
T (x, t) < p(x)t−

√
t log(|X |/ε)/2

)
< ε/|X |.

Thus, for t < O(At), the bound becomes 2ε + 1, for t >
O(At), it is 3ε. Setting εt = 1/t2, we obtain that

E[Rn] ≤ O(At)

as desired. ut

5 Conclusions and further work
We considered a generalization of the multi-armed bandit
problem, where performing an action (or collecting the re-
ward) takes a random amount of time. The goal of the de-
cision maker is to maximize the reward per unit time where
in each time step some side information is received before
the decision is made. In this setting one needs to consider
seriously the time needed to perform an action, since spend-
ing long times with less rewarding actions seriously limits the
performance of any algorithm in a given time period. There-
fore, efficient methods must predict simultaneously the ex-
pected rewards and durations of all actions, as well as to esti-
mate the long term optimal performance. The latter is essen-
tial as each action has a hidden cost associated with it: since
actions take time, for their correct evaluation their immedi-
ate payoffs must be decremented by the optimal reward lost
during the time it takes to execute the action.

In this paper we proposed an algorithm to solve this prob-
lem, whose cumulative reward after performing n actions is
only Õ(log n) less than that of the best policy in hindsight.
The algorithm is based on the upper confidence bound idea
of Auer et al. [2002]. However, in our case the natural per-
formance measure for a policy is the average return per time

unit, and making an efficiet estimate for this quantity is sig-
nificantly harder than in the simple bandit case. The reason
for this is that all the actions are connected via the averaging,
hence even one undersampled action can bias the whole es-
timate. Another problem with the algorithm as presented is
that it needs to enumerate all the policies in order to compute
the estimate of the optimal gain.

The extension of the algorithm presented seems possible to
certain semi-Markov models when there is a state that is re-
current under all stationary policies. Another interesting av-
enue for further research is to consider continuous time bandit
problems in non-stochastic environments.
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